IRIM Robotics Seminar—Jessy W. Grizzle of Univ. of Michigan

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
Contact

Josie Giles
IRIM Marketing Communications Manager
josie@gatech.edu

Summaries

Summary Sentence: “Mathematics and Learning for Agile and Dynamic Bipedal Locomotion”

Full Summary: The Institute for Robotics and Intelligent Machines presents “Mathematics and Learning for Agile and Dynamic Bipedal Locomotion” by Jessy W. Grizzle of the University of Michigan. The event will be held in the Marcus Nanotechnology Building, Rooms 1116-1118, from 12:15-1:15 p.m. and is open to the public.

Media
  • Jessy W. Grizzle Jessy W. Grizzle
    (image/jpeg)

The Institute for Robotics and Intelligent Machines presents “Mathematics and Learning for Agile and Dynamic Bipedal Locomotion” by Jessy W. Grizzle of the University of Michigan. The event will be held in the Marcus Nanotechnology Building, Rooms 1116-1118, from 12:15-1:15 p.m. and is open to the public.

Abstract

Is it great fortune or a curse to do legged robotics on a university campus that has Maya Lin’s earthen sculpture, The Wave Field? Come to the talk and find out!

Our work on model-based feedback control for highly dynamic locomotion in bipedal robots will be amply illustrated through images, videos, and math. The core technical portion of the presentation is a method to overcome the obstructions imposed by high-dimensional bipedal models by embedding a stable walking motion in an attractive low-dimensional surface of the system’s state space.

The process begins with trajectory optimization to design an open-loop periodic walking motion of the high-dimensional model and then adding to this solution, a carefully selected set of additional open-loop trajectories of the model that steer toward the nominal motion. A drawback of trajectories is that they provide little information on how to respond to a disturbance. To address this shortcoming, supervised machine learning is used to extract a low-dimensional, state-variable realization of the open-loop trajectories. The periodic orbit is now an attractor of a low-dimensional state-variable model but is not attractive in the full-order system. We then use the special structure of mechanical models associated with bipedal robots to embed the low-dimensional model in the original model in such a manner that the desired walking motions are locally exponentially stable.

When combined with robot vision, we hope this approach to control design will allow the full complexity of the Wave Field to be conquered. In any case, as Jovanotti points out, “Non c'è scommessa più persa di quella che non giocherò.” The speaker for one will keep trying!

Bio

Jessy W. Grizzle received a Ph.D. in electrical engineering from The University of Texas at Austin in 1983. He is currently a professor of Electrical Engineering and Computer Science at the University of Michigan, where he holds the titles of the Elmer Gilbert Distinguished University Professor and the Jerry and Carol Levin Professor of Engineering.

Grizzle jointly holds sixteen patents dealing with emissions reduction in passenger vehicles through improved control system design. A fellow of the IEEE and IFAC, he received the Paper of the Year Award from the IEEE Vehicular Technology Society in 1993, the George S. Axelby Award in 2002, the Control Systems Technology Award in 2003, the Bode Prize in 2012, and the IEEE Transactions on Control Systems Technology Outstanding Paper Award in 2014.

His work on bipedal locomotion has been the object of numerous plenary lectures and has been featured in The EconomistWired MagazineDiscover MagazineScientific AmericanPopular Mechanics, and several television programs, including CNN, ESPN, and the Discovery Channel.

Related Links

Additional Information

In Campus Calendar
Yes
Groups

IRIM

Invited Audience
Faculty/Staff, Postdoc, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
Robotics seminar, robots, seminar, graduate students, Institute for Robotics and Intelligent Machines (IRIM), robotics, IRIM, Institute for Robotics and Intelligent Machines, robotics institute
Status
  • Created By: Josie Giles
  • Workflow Status: Published
  • Created On: Jul 11, 2018 - 2:48pm
  • Last Updated: Sep 7, 2018 - 1:28pm