Dynamic Reconfiguration for Versatile Mobile Performance

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday March 2, 2017 - Friday March 3, 2017
      3:00 pm - 3:59 pm
  • Location: MRDC Building, Room 4211
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

jonathan.rogers@me.gatech.edu

Summaries

Summary Sentence: Anirban Mazumdar presents a seminar for the School of Mechanical Engineering.

Full Summary: Sandia National Laboratories’ Anirban Mazumdar presents “Dynamic Reconfiguration for Versatile Mobile Performance.” The event will be held in the MRDC Building, Room 4211, from 3-4 p.m.

Sandia National Laboratories’ Anirban Mazumdar presents “Dynamic Reconfiguration for Versatile Mobile Performance.” The event will be held in the MRDC Building, Room 4211, from 3-4 p.m.

Abstract

Mobile robots can transform how society addresses important challenges including disaster response, infrastructure inspection, and public safety. However, many mobile systems cannot yet live up to this promise. Robots designed for high performance in one environment are frequently unable to maintain mobility, energy efficiency, and performance in a new or dynamic setting. Systems that can reconfigure have the potential to function effectively in unstructured environments by changing their gearing, actuation, or controllers to best match the changing conditions. In this talk, I will describe how dynamic reconfiguration can enable versatility, agility, and efficiency in mobile robots. I will explore three case study examples from my past research: 1) Multi-modal mobility for steel bridge inspection, 2) Underwater maneuverability in complex environments, and 3) Energy efficient legged locomotion. Specific accomplishments include novel pump-valve underwater propulsion systems, as well as variable and contact based mechanisms for walking robots. The talk will conclude with an overview of my vision for how dynamic reconfiguration can enhance the future of mobile robotics through the development of new drivetrains, emulation of multi-scale biological behaviors, and synergistic human-machine teaming.

Bio

Sam Burden earned his B.S. with Honors in Electrical Engineering from the University of Washington in Seattle in 2008. He earned his Ph.D. in Electrical Engineering and Computer Sciences from the University of California, Berkeley in 2014, where he subsequently spent one year as a postdoctoral scholar. In 2015, he returned to UW EE as an assistant professor; in 2016, he received a Young Investigator award from the Army Research Office (ARO-YIP). Burden is broadly interested in discovering and formalizing principles of sensorimotor control. Specifically, he focuses on applications in dynamic and dexterous robotics, neuromechanical motor control, and human-cyber-physical systems. In his spare time, he teaches robotics to students of all ages in classrooms and campus events.

Related Links

Additional Information

In Campus Calendar
No
Groups

IRIM

Invited Audience
Faculty/Staff, Public, Undergraduate students, Graduate students
Categories
No categories were selected.
Keywords
graduate students, Institute for Robotics and Intelligent Machines (IRIM), robotics
Status
  • Created By: Josie Giles
  • Workflow Status: Published
  • Created On: Mar 2, 2017 - 12:23pm
  • Last Updated: Apr 13, 2017 - 5:12pm