*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
This seminar will be held in the TSRB Banquet Hall at Tech Square from 12-1 p.m. The seminar is open to the public.
Raquel Urtasun of the Toyota Technological Institute at Chicago presents "Efficient Algorithms for Semantic Scene Parsing" as part of the RIM Seminar Series.
Abstract
Developing autonomous systems that are able to assist humans in everyday tasks is one of the grand challenges in modern computer science. Notable examples are personal robotics for the elderly and people with disabilities, as well as autonomous driving systems that can help decrease fatalities caused by traffic accidents. In order to perform tasks such as navigation, recognition, and manipulation of objects, these systems should be able to efficiently extract 3D knowledge of their environment. While a variety of novel sensors have been developed in the past few years, we focus on the extraction of this knowledge from visual information alone. In this talk, I'll show how Markov random fields provide a great mathematical formalism to extract this knowledge. In particular, I'll focus on a few examples; i.e., 3D reconstruction, 3D layout estimation, 2D holistic parsing and object detection, and show representations and inference strategies that allow us to achieve state-of-the-art performance as well as several orders of magnitude speed-ups.