*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Atlanta, GA | Posted: April 4, 2004
J. Carson Meredith, an assistant professor of chemical and biomolecular engineering at the Georgia Institute of Technology, has pioneered combinatorial synthesis and high-throughput screening in polymer science - techniques that allow researchers to create and evaluate thousands of polymeric materials in a single experiment. On April 1 at the American Chemical Society's 227th national meeting in Anaheim, Calif., Meredith presented recent advances in biomedical and electronic polymers.
Meredith began his research in 1998 while working on a new biomaterial at the National Institute of Standards and Technology. At that time, measuring biological and mechanical properties of polymers was an expensive and time-consuming task.
"As we thought about it, we realized the number of experiments we'd have to run was too large," Meredith recalled. "So we took a step back and asked, 'What if we could test 1,000 samples at once?'"
Inspired by combinatorial methods used in drug discovery, Meredith developed a technology for depositing large collections of polymers on a single microscope slide, using property gradients to create thousands of variations in composition, temperature and thickness.
These polymer libraries dramatically reduce the time and effort required to develop new materials. What's more, statistical reliability is increased when taking measurements under the same environment.
"In contrast, with a traditional one-sample-per-one-measurement approach, you run the risk of not fully optimizing the material," Meredith said. "Or you could completely miss the material you wanted to find in the first place."
Since joining Georgia Tech in 2000, Meredith has been applying his technologies to develop new materials in the biomedical and electronic arenas.
"Biomedical materials are especially challenging to design because they must be compatible with the human body," Meredith explained. "Yet the physical surface of polymers can affect the attachment and function of biological cells."
Achieving control over cellular interaction with synthetic surfaces will open new doors in biomaterials, such as engineering artificial tissues that are alternatives to organ transplants or deliver drugs only to diseased cells.
Collaborating with Andrés García in Georgia Tech's Woodruff School of Mechanical Engineering, Meredith has already developed a technique for growing bone cells on polymer libraries and discovered a unique polymer formulation that causes optimal function.
"By changing the physical microstructure of the polymer, you can achieve large changes in how biological cells respond," Meredith explained. "The polymer libraries allow us to pinpoint very accurately the precise composition that works."