Statistics Seminar-Localising Temperature Risk

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday January 19, 2012 - Friday January 20, 2012
      10:00 am - 10:59 am
  • Location: ISyE Executive Classroom
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Jeff Wu

Summaries

Summary Sentence: Localising Temperature Risk

Full Summary: No summary paragraph submitted.

TITLE: Localising Temperature Risk

SPEAKER: Professor Wolfgang Haerdle

ABSTRACT:

On the temperature derivative market, modeling temperature volatility is an important issue for pricing and hedging. In order to apply pricing tools of financial mathematics, one needs to isolate a Gaussian risk factor. A conventional model for temperature dynamics is a stochastic model with seasonality and intertemporal autocorrelation. Empirical work based on seasonality and autocorrelation correction reveals that the obtained residuals are heteroscedastic with a periodic pattern. The object of this research is to estimate this heteroscedastic function so that after scale normalisation a pure standardised Gaussian variable appears. Earlier work investigated this temperature risk in different locations and showed that neither parametric component functions nor a local linear smoother with constant smoothing parameter are flexible enough to generally describe the volatility process well. Therefore, we consider a local adaptive modeling approach to find at each time point, an optimal smoothing parameter to locally estimate the seasonality and volatility. Our approach provides a more flexible and accurate fitting procedure of localised temperature risk process by achieving excellent normal risk factors.

Contact: "Wolfgang Haerdle" wolfgang.k.haerdle@me.com

Additional Information

In Campus Calendar
No
Groups

School of Industrial and Systems Engineering (ISYE)

Invited Audience
No audiences were selected.
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Anita Race
  • Workflow Status: Published
  • Created On: Jan 9, 2012 - 5:08am
  • Last Updated: Oct 7, 2016 - 9:56pm