OLED Sealing Process Reduces Water Intrusion and Increases Lifetime

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Contact
Abby Robinson
Research News and Publications
Contact Abby Robinson
404-385-3364
Sidebar Content
No sidebar content submitted.
Summaries

Summary Sentence:

Depositing silicon oxynitride film on OLED surface improves life

Full Summary:

Researchers have developed an improved organic light emitting diode (OLED) sealing process to reduce moisture intrusion and improve device lifetime. They are using advanced ion assisted deposition to deposit a high-density, pinhole-free thin silicon oxynitride film on the OLED surface. The process can be completed at room temperature, which keeps the organic material intact.

Media

Researchers have developed an improved organic light emitting diode (OLED) sealing process to reduce moisture intrusion and improve device lifetime.

OLEDs are promising for the next generation of displays and solid state lighting because they use less power and can be more efficiently manufactured than current technology. However, the intrusion of moisture into the displays can damage or destroy an OLED's organic material.

"OLEDs have better color and flexibility and the capability of larger displays, but companies still need an inexpensive encapsulation method that can be used to mass produce organic electronics that don't allow moisture in," said Wusheng Tong, a senior research scientist at the Georgia Tech Research Institute (GTRI).

Manufacturers now seal displays in an inert atmosphere or in a vacuum environment. They glue a glass lid on top of the display substrate with a powder inside the display to absorb moisture that diffuses through the glue. These seals are expensive and labor-intensive to assemble.

With funding from GTRI's independent research and development program, Tong and his GTRI collaborators - senior research scientist Hisham Menkara and principal research scientist Brent Wagner - have replaced the glass enclosure with a thin-film barrier formed by a less expensive conventional deposition method.

"We chose a passivation coating process that could be performed at room temperature so that the organic material remained intact," said Tong.

The researchers selected advanced ion assisted deposition, which utilizes reactive ions to deposit a high-density, pinhole-free thin silicon oxynitride (SiON) film on the OLED surface.

"Ideally, the film should be as thin as possible, but if it's too thin, a pinhole or other defect could appear and cause a problem," explained Tong. "We found that a film of 50-200 nanometer thickness was perfect."

During testing, the SiON-encapsulated OLEDs showed no sign of degradation after seven months in an open-air environment, while the OLEDs without the coating degraded completely in less than two weeks under the same conditions.

When Tong conducted accelerating aging tests in an environmental chamber that maintained a temperature of 50 degrees Celsius and 50 percent relative humidity, the OLEDs encapsulated with SiON films showed little degradation for at least two weeks. The OLEDs without encapsulation, however, decomposed immediately.

"We've demonstrated that this deposition process improves the lifetime of the OLEDs by blocking the intrusion of moisture, so now we're hoping to work with industry partners to develop a mass production process for our encapsulation technique," added Tong.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA

Media Relations Contacts: Abby Vogel (404-385-3364); E-mail: (avogel@gatech.edu) or Kirk Englehardt (404-407-7280); E-mail: (kirk.englehardt@gtri.gatech.edu) or John Toon (404-894-6986); E-mail: (jtoon@gatech.edu).

Writer: Abby Vogel

Related Links

Additional Information

Groups

Research Horizons

Categories
Engineering, Nanotechnology and Nanoscience, Research, Physics and Physical Sciences
Related Core Research Areas
No core research areas were selected.
Newsroom Topics
No newsroom topics were selected.
Keywords
advanced, assisted, coat, coating, deposition, encapsulate, film, ion, light emitting diode, moisture, oled, organic, oxynitride, seal, silicon, Water
Status
  • Created By: Abby Vogel Robinson
  • Workflow Status: Published
  • Created On: Apr 21, 2008 - 8:00pm
  • Last Updated: Oct 7, 2016 - 11:03pm