*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Pushing a shovel through snow, planting an umbrella on the beach, wading through a ball pit, and driving over gravel all have one thing in common: They all are exercises in intrusion, with an intruding object exerting some force to move through a soft and granular material. Predicting what it takes to push through sand, gravel, or other soft media can help engineers drive a rover over Martian soil, anchor a ship in rough seas, and walk a robot through sand and mud. But modeling the forces involved in such processes is a huge computational challenge that often takes days to weeks to solve. Now, engineers at the Massachusette Institute of Technology and Georgia Tech have found a faster and simpler way to model intrusion through any soft, flowable material. Daniel Goldman, Dunn Family Professor in the School of Physics, joined MIT researchers for this project.