Science isn't as disruptive as it used to be. Now we need to understand why

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

External News Details

Is science better when it disrupts or when there are just incremental improvements to previous knowledge? The topic was analyzed in a recent study, and it seems that researchers have spent these past years improving things rather than trying to revolutionize everything. The study suggests that the level of "disruptiveness" in scientific research has gone way down in the 2000s compared to the last half-century. Yian Yin, a computational social scientist at Northwestern University in Evanston, Illinois, highlights how disruptiveness is not inherently good, and incremental science is not necessarily bad. Yin cites the first direct observation of gravitational waves, a landmark discovery that was both revolutionary and the product of incremental science. Georgia Tech researchers, many from the School of Physics, worked with researchers at the Laser Interferomoter Gravitational Wave Observatory (LIGO) on the gravitational wave observations. (This coverage also appeared in Nature and Inside Higher Education.)

Additional Information

Groups

College of Sciences

Categories
Physics and Physical Sciences
Keywords
College of Sciences, School of Physics, LIGO, Laser Interferometer Gravitational-Wave Observatory, Gravitational waves, science
Status
  • Created By: Renay San Miguel
  • Workflow Status: Published
  • Created On: Jan 9, 2023 - 2:53pm
  • Last Updated: Feb 2, 2023 - 1:33pm