ISyE Seminar - Angelia Nedich

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Friday September 23, 2022
      11:30 am - 12:30 pm
  • Location: Main 228
  • Phone:
  • URL: ISyE Building
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Penalty Methods for Large-Scale Constrained Optimization Problems

Full Summary:

Abstract:

The optimization problems with a large number of constraints are emerging in many application domains such as optimal control, reinforcement learning, and statistical learning, and artificial intelligence, in general. The challenges posed by the size of the problems in these applications resulted in prolific research in the domain of optimization theory and algorithms. Many refinements and accelerations of various (mainly) first-order methods have been proposed and studied, majority of which solves a penalized re-formulation of the original problem in order to cope with the large number of constraints. This talk will focus on problems with linear constraints and Huber-type penalty approach. Convergence behavior and efficiency of the algorithm will be addressed, as well as some supporting theory.

Title:

Penalty Methods for Large-Scale Constrained Optimization Problems

Abstract:

The optimization problems with a large number of constraints are emerging in many application domains such as optimal control, reinforcement learning, and statistical learning, and artificial intelligence, in general. The challenges posed by the size of the problems in these applications resulted in prolific research in the domain of optimization theory and algorithms. Many refinements and accelerations of various (mainly) first-order methods have been proposed and studied, majority of which solves a penalized re-formulation of the original problem in order to cope with the large number of constraints. This talk will focus on problems with linear constraints and Huber-type penalty approach. Convergence behavior and efficiency of the algorithm will be addressed, as well as some supporting theory.

Bio:

Angelia Nedich has a Ph.D. from Moscow State University, Moscow, Russia, in Computational Mathematics and Mathematical Physics (1994), and a Ph.D. from Massachusetts Institute of Technology, Cambridge, USA in Electrical and Computer Science Engineering (2002). She has worked as a senior engineer in BAE Systems North America, Advanced Information Technology Division at Burlington, MA. Currently, she is a faculty member of the school of Electrical, Computer and Energy Engineering at Arizona State University at Tempe. Prior to joining Arizona State University, she has been a Willard Scholar faculty member at the University of Illinois at Urbana-Champaign. She is a recipient (jointly with her co-authors) of the Best Paper Award at the Winter Simulation Conference 2013 and the Best Paper Award at the International Symposium on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt) 2015. Her general research interest is in optimization, large scale complex systems dynamics, variational inequalities and games.

Additional Information

In Campus Calendar
Yes
Groups

School of Industrial and Systems Engineering (ISYE)

Invited Audience
Faculty/Staff, Postdoc, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Julie Smith
  • Workflow Status: Published
  • Created On: Sep 15, 2022 - 9:10am
  • Last Updated: Sep 15, 2022 - 9:11am