ISyE Statistical Seminar Speaker- Tan Bui-Thanh

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday September 15, 2022
      12:00 pm - 1:00 pm
  • Location: ISyE Executive Education Room, Rm-228 Main Atlanta, GA
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: A model-constrained deep learning approach for inverse problems and UQ

Full Summary: Bio Tan Bui-Thanh is an associate professor, and the endowed William J Murray Jr. Fellow in Engineering No. 4, of the Oden Institute for Computational Engineering & Sciences, and the Department of Aerospace Engineering & Engineering mechanics at the university of Texas at Austin. Bui-Thanh obtained his PhD from the Massachusetts Institute of Technology in 2007, Master of Sciences from the Singapore MIT-Alliance in 2003, and Bachelor of Engineering from the Ho Chi Minh City University of Technology (DHBK) in 2001. He has decades of experience and expertise on multidisciplinary research across the boundaries of different branches of computational science, engineering, and mathematics. Bui-Thanh is a former elected vice president of the SIAM Texas-Louisiana Section, and currently the elected secretary of the SIAM SIAG/CSE. Bui-Thanh was an NSF early CAREER recipient, the Oden Institute distinguished research award, and a two-time winner of the Moncrief Faculty Challenging award.     Abstract Deep Learning (DL) by design is purely data-driven and in general does not require physics. This is the strength of DL but also one of its key limitations when applied to science and engineering problems in which underlying physical properties (such as stability, conservation, and positivity) and desired accuracy need to be achieved. DL methods in their original forms are not capable of respecting the underlying mathematical models or achieving desired accuracy even in big-data regimes. On the other hand, many data-driven science and engineering problems, such as inverse problems, typically have limited experimental or observational data, and DL would overfit the data in this case. Leveraging information encoded in the underlying mathematical models, we argue, not only compensates missing information in low data regimes but also provides opportunities to equip DL methods with the underlying physics and hence obtaining higher accuracy. This talk introduces a Tikhonov Network (TNet) that is capable of learning Tikhonov regularized inverse problems. We present and provide intuitions for our formulations for general nonlinear problems. We rigorously show that our TNet approach can learn information encoded in the underlying mathematical models, and thus can produce consistent or equivalent inverse solutions, while naive purely data-based counterparts cannot. Furthermore, we theoretically study the error estimate between TNet and Tikhhonov inverse solutions and under which conditions they are the same. Extension to statistical inverse problems will also be presented.

Bio

Tan Bui-Thanh is an associate professor, and the endowed William J Murray Jr. Fellow in Engineering No. 4, of the Oden Institute for Computational Engineering & Sciences, and the Department of Aerospace Engineering & Engineering mechanics at the university of Texas at Austin. Bui-Thanh obtained his PhD from the Massachusetts Institute of Technology in 2007, Master of Sciences from the Singapore MIT-Alliance in 2003, and Bachelor of Engineering from the Ho Chi Minh City University of Technology (DHBK) in 2001. He has decades of experience and expertise on multidisciplinary research across the boundaries of different branches of computational science, engineering, and mathematics. Bui-Thanh is a former elected vice president of the SIAM Texas-Louisiana Section, and currently the elected secretary of the SIAM SIAG/CSE. Bui-Thanh was an NSF early CAREER recipient, the Oden Institute distinguished research award, and a two-time winner of the Moncrief Faculty Challenging award.

 

 

Abstract

Deep Learning (DL) by design is purely data-driven and in general does not require physics. This is the strength of DL but also one of its key limitations when applied to science and engineering problems in which underlying physical properties (such as stability, conservation, and positivity) and desired accuracy need to be achieved. DL methods in their original forms are not capable of respecting the underlying mathematical models or achieving desired accuracy even in big-data regimes. On the other hand, many data-driven science and engineering problems, such as inverse problems, typically have limited experimental or observational data, and DL would overfit the data in this case. Leveraging information encoded in the underlying mathematical models, we argue, not only compensates missing information in low data regimes but also provides opportunities to equip DL methods with the underlying physics and hence obtaining higher accuracy. This talk introduces a Tikhonov Network (TNet) that is capable of learning Tikhonov regularized inverse problems. We present and provide intuitions for our formulations for general nonlinear problems. We rigorously show that our TNet approach can learn information encoded in the underlying mathematical models, and thus can produce consistent or equivalent inverse solutions, while naive purely data-based counterparts cannot. Furthermore, we theoretically study the error estimate between TNet and Tikhhonov inverse solutions and under which conditions they are the same. Extension to statistical inverse problems will also be presented.

Additional Information

In Campus Calendar
Yes
Groups

School of Industrial and Systems Engineering (ISYE)

Invited Audience
Faculty/Staff, Public, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: chumphrey30
  • Workflow Status: Published
  • Created On: Aug 24, 2022 - 11:38am
  • Last Updated: Aug 24, 2022 - 11:39am