*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Title: Analysis of Fatigue Behavior, Fatigue Damage and Fatigue Fracture Surfaces of two high strength steels.
Abstract: Building fuel efficient automobiles is increasingly important due to the rising cost of energy. One way to improve fuel efficiency is to reduce the overall automobile weight. Weight reductions using steel components are desirable because of easy integration into existing manufacturing systems. Designing components with Advanced High Strength Steels (AHSS) has allowed for material reductions, while maintaining strength requirements. Two Advanced High Strength steel microstructures investigated in this research utilize different strengthening mechanisms to obtain a desired tensile strength grade of 590MPa. One steel, HR590, utilizes precipitation strengthening to refine the grain size and harden the steel. The other steel, HR590DP, utilizes a dual phase microstructure consisting of martensite constituents in a ferrite matrix. The steels are processed to have the same tensile strength grade, but exhibit different fatigue behavior. The central objective of this research is to characterize and compare the fatigue behavior of these two steels. The results show the dual phase steel work hardens at a low fatigue life. The precipitation strengthened microstructure shows hardening at low strain amplitudes, softening at intermediate strain amplitudes and little to no effect at high strain amplitudes. These different fatigue responses are characterized and quantified in this research. Additionally, observations showing the fracture surfaces and the bulk microstructure are analyzed.