BioE PhD Defense Presentation- Camila Camargo

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday June 13, 2022
      2:00 pm - 4:00 pm
  • Location: 1128 IBB https://gatech.zoom.us/j/95229216623
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: "Adhesion analysis of CD8+ T cells using engineered microfluidic platforms to interrogate extravasation capacity for adoptive cell therapy"

Full Summary: BioE PhD Defense Presentation- "Adhesion analysis of CD8+ T cells using engineered microfluidic platforms to interrogate extravasation capacity for adoptive cell therapy" -Camila Camargo

Advisor:

Dr. Susan Thomas (Georgia Institute of Technology)

 

Committee Members:

Dr. Andrés García (Georgia Institute of Technology)

Dr. Krishnendu Roy (Georgia Institute of Technology)

Dr. Shuichi Takayama (Georgia Institute of Technology)

Dr. Edmund Waller (Emory University)

 

Adhesion analysis of CD8+ T cells using engineered microfluidic platforms to interrogate extravasation capacity for adoptive cell therapy

 

Adoptive cell therapy (ACT) has emerged as a powerful treatment option for patients with metastatic melanoma. Despite encouraging results with this treatment modality, responses are seen in only a minority of patients. It is now known that low patient rates of response are due to poor tumor-infiltrating lymphocytes (TIL) survival post-transfer as well as poor trafficking of transferred cells to relevant tissues. For TILs to infiltrate disease tissue from the blood vasculature, they utilize a highly orchestrated adhesion cascade that begins with selectin-mediated rolling adhesion to endothelial cells, chemokine-triggered integrin activation, followed by integrin-mediated firm adhesion and subsequent extravasation. These adhesion ligand-receptor interactions have been implicated in TIL homing, however, an outstanding problem in the field is a lack of understanding of how TIL’s surface adhesion ligands initiate and sustain adhesion interactions within the tumor vasculature, and how this may lead to improved engraftment of TILs to the tumor microenvironment. As such, the overall objective of this project is to utilize engineered microfluidic devices that enable the interrogation of adhesive behavior of cells under relevant hemodynamic forces to 1) analyze how cell adhesion is regulated by different microenvironments of the tumor vasculature, 2) determine what adhesion receptors, cytokines, and activation markers are present in highly adhesive cells and 3) determine if high adhesivity leads to increase tumor engraftment and therapeutic effects. Using in vitro microfluidic devices that mimic the hemodynamic environment of the tumor vasculature, we have elucidated the cellular characteristics of CD8+ T cells associated with selectin-mediated adhesion in flow. This work will provide insight into which subpopulation of CD8+ T cells is the most appropriate for enhanced tumor homing for ACT.

Additional Information

In Campus Calendar
No
Groups

Bioengineering Graduate Program

Invited Audience
Faculty/Staff, Public, Undergraduate students
Categories
Career/Professional development
Keywords
go-BioE
Status
  • Created By: Laura Paige
  • Workflow Status: Published
  • Created On: May 31, 2022 - 12:36pm
  • Last Updated: May 31, 2022 - 4:51pm