CSE Seminar By: Deepak Agarwal

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday April 25, 2011 - Tuesday April 26, 2011
      10:00 am - 10:59 am
  • Location: MiRC 102 A
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Dr. Alexander Gray at agray@cc.gatech.edu

Summaries

Summary Sentence: Recommender Systems --- The Art and Science of Matching Items to Users

Full Summary: No summary paragraph submitted.

Deepak Agarwal

Yahoo! Research, Santa Clara, CA

Title:

 Recommender Systems --- The Art and Science of Matching Items to Users

Abstract:

Algorithmically matching items to users in a given context is essential for the success and profitability of large scale recommender systems like content optimization, computational advertising, web search, shopping, movie recommendation and so on. A key statistical problem that is essential to the success of such systems is to estimate response rates of some rare event (e.g. click-rates, buy rates, etc) when users interact with items. This is a very high dimensional estimation problem since data is obtained by interactions among several heavy-tailed categorical variables.

 In this talk, I will discuss statistical techniques based on large scale multi-level hierarchical models, some of which have been deployed and are successfully recommending articles and ads to users on Yahoo!

websites. The methods described are based reduced rank logistic regression, probabilistic matrix factorization, supervised Latent Dirichlet Allocation, and multi-hierarchy smoothing.

Bio:

Deepak Agarwal is a statistician at Yahoo! who is interested in developing statistical and machine learning methods to enhance the performance of large scale recommender systems. Deepak and his collaborators significantly improved article recommendation on several Yahoo! websites, most notably on the Yahoo! front page. He also works closely with teams in computational advertising, yet another large scale recommender system. He serves as associate editor for the Journal of American Statistical Association and has received four best paper awards in the past.

Additional Information

In Campus Calendar
No
Groups

College of Computing, School of Computational Science and Engineering

Invited Audience
No audiences were selected.
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Lometa Mitchell
  • Workflow Status: Published
  • Created On: Apr 21, 2011 - 8:14am
  • Last Updated: Oct 7, 2016 - 9:54pm