PhD Defense by Sungil Hong

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Friday April 1, 2022
      2:30 pm - 4:30 pm
  • Location: Atlanta, GA; REMOTE
  • Phone:
  • URL: TEAMS: Microsoft
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Analyzing Physical Workplace and Service Management Using Natural Language Processing and Machine Learning Approaches

Full Summary: No summary paragraph submitted.

Ph.D. Dissertation Final Dissertation Defense – Sungil Hong – College of Design, School of Building Construction, Georgia Institute of Technology

 

Date: Friday, April 1st, 2022

Time: 2:30 PM – 4:30 PM EST

Link: https://teams.microsoft.com/l/meetup-join/19%3ameeting_ODczNDRhZTYtYjgyNS00MmRmLWI3YmQtNDkwM2M2MzRhYzJm%40thread.v2/0?context=%7b%22Tid%22%3a%22482198bb-ae7b-4b25-8b7a-6d7f32faa083%22%2c%22Oid%22%3a%2268477ce6-5cd5-4dff-b8b3-0cd1be031b9a%22%7d

 

 

Advising Committee

Eunhwa Yang, Ph.D., Advisor

Assistant Professor, School of Building Construction

Georgia Institute of Technology

 

Baabak Ashuri, Ph.D

Professor, School of Building Construction/ Civil & Environmental Engineering

Georgia Institute of Technology

 

Xiuwei Zhang, Ph.D.

Assistant Professor, School of Computational Science and Engineering,

Georgia Institute of Technology

 

Daniel Castro-Lacouture, Ph.D

Professor, School of Building Construction

Georgia Institute of Technology

 

Bonnie Sanborn, M.Sc.

Design Research Leader|Principal

DLR Group

 

Title

Analyzing Physical Workplace and Service Management Using Natural Language Processing and Machine Learning Approaches

 

Abstract

The demand for workplace flexibility has emerged according to ever-changing environments, such as sharing and gig economy, alternative work arrangement, and COVID-19. This study proposes a redefined facility management model corresponding to the changing circumstances, which provides not only space but also activity support and leisure services. Coworking space (CWS) is one of the embodiments of the model. This research aims to develop CWS management strategies for 1) user preferences in physical workplace environments and services during COVID-19 and 2) data management methods utilizing natural language processing (NLP) and machine learning techniques. Two main studies in this research address three research objectives: 1) identifying preferences for facilities and services factors in CWSs during COVID-19; 2) detecting changing preferences for factors about facilities and services during COVID-19; 3) proposing the applications of machine learning and NLP techniques and demonstrating the applicability of computational data collection and analysis methods in the physical workplace management research. First, Study I proposes a thematic categorization scheme of CWS spatial and service factors and elements. Based on the categories, a mixed-method approach was utilized for the comprehensive data analysis, including content analysis, classification, and clustering. The results show that CWS users have become sensitive to disruptive behaviors and hygienic responses to infectious diseases after the pandemic. The findings also present a need for a sense of community and various technology needs for virtual interactions. Second, Study II performed the data integration of a large computerized maintenance management system dataset of a public college campus into a single CWS building maintenance dataset to build robust machine learning-based text classification models for a small dataset. The results show the qualitative and quantitative increase in prediction performance of text classifications. Study II implies that data integration will accelerate smart facility management, including small or single buildings, by sharing public datasets. In conclusion, this research sheds light on online big data collection and analysis in physical workplace management research. It also presents how the facility management industry can apply such state-of-the-art technology in utilizing historical data to make data-driven decisions.

 

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Faculty/Staff, Public, Undergraduate students
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Mar 18, 2022 - 2:30pm
  • Last Updated: Mar 18, 2022 - 2:30pm