*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
VIRTUAL EVENT - Participation Link
"Biomechanical Imaging of Cells, Extracellular Matrix, and Cancer Invasion in 3D"
Ming Guo, Ph.D.
Associate Professor
Class 1954 Career Development Chair
Department of Mechanical Engineering
Massachusetts Institute of Technology
ABSTRACT
Sculpting of structure and function of three-dimensional multicellular tissues depend critically on the spatial and temporal coordination of cellular physical properties. Yet the organizational principles that govern these events, and their disruption in disease, remain poorly understood. Here, I will introduce several of our recent work in understanding cell and extracellular matrix (ECM) mechanics, as well as their mechanical interactions in 3D. I will then focus on discussing a recent progress to map the spatial and temporal evolution of positions, motions, and physical characteristics of individual cells throughout a growing mammary cancer model. Compared with cells in the tumor core, cells at the tumor periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, suppression of which delays transition to an invasive phenotype. Together, these findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression. If time allows, I will also discuss our recent progress in demonstrating impact of cell mechanics in cell and tissue biological functions.