Ph.D. Dissertation Defense - Jun Qi

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Tuesday January 4, 2022
      9:00 am - 11:00 am
  • Location: https://bluejeans.com/277163222/7023
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Theoretical Error Performance Analysis for Deep Neural Networks Based Regression Functional Approximation

Full Summary: No summary paragraph submitted.

TitleTheoretical Error Performance Analysis for Deep Neural Networks Based Regression Functional Approximation

Committee:

Dr. Chin-Hui Lee, ECE, Chair, Advisor

Dr. Xiaoli Ma, ECE

Dr. David Anderson, ECE

Dr. Justin Romberg, ECE

Dr. Sabato Marco Siniscalchi, Univ. of Enna Kore

Abstract: Based on Kolmogorov’s superposition theorem and universal approximation theorems by Cybenko and Barron, any vector-to-scalar function can be approximated by a multi-layer perceptron (MLP) within certain bounds. The theorems inspire us to exploit deep neural networks (DNN) based vector-to-vector regression. This dissertation aims at establishing theoretical foundations on DNN based vector-to-vector functional approximation and bridging the gap between DNN based applications and their theoretical understanding in terms of representation and generalization powers. Concerning the representation power, we develop the classical universal approximation theorems and put forth a new upper bound to vector-to-vector regression. More specifically, we first derive upper bounds on the artificial neural network (ANN), and then we generalize the concepts to DNN based architectures. Our theorems suggest that a broader width of the top hidden layer and a deep model structure bring a more expressive power of DNN based vector-to-vector regression, which is illustrated with speech enhancement experiments. As for the generalization power of DNN based vector-to-vector regression, we employ a well-known error decomposition technique, which factorizes a generalized loss into the sum of an approximation error, an estimation error, and an optimization error. Since the approximation error is associated with our attained upper bound upon the expressive power, we concentrate our research on deriving the upper bound for the estimation error and optimization error based on statistical learning theory and non-convex optimization. Moreover, we demonstrate that mean absolute error (MAE) satisfies the property of Lipschitz continuity and exhibits better performance than mean squared error (MSE). The speech enhancement experiments with DNN models are utilized to corroborate our aforementioned theorems. Finally, since an over-parameterized setting for DNN is expected to ensure our theoretical upper bounds on the generalization power, we put forth a novel deep tensor learning framework, namely tensor-train deep neural network (TT-DNN), to deal with an explosive DNN model size and realize effective deep regression with much smaller model complexity.

Additional Information

In Campus Calendar
No
Groups

ECE Ph.D. Dissertation Defenses

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
Phd Defense, graduate students
Status
  • Created By: Daniela Staiculescu
  • Workflow Status: Published
  • Created On: Dec 8, 2021 - 11:18am
  • Last Updated: Dec 8, 2021 - 11:18am