PHD Defense by Byron Taylor Davis

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday December 2, 2021
      5:00 pm - 7:00 pm
  • Location: Montgomery Knight Building 317
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: The Improvement of Multi-Satellite Orbit Determination Through the Incorporation of Intersatellite Ranging Observations

Full Summary: No summary paragraph submitted.

Byron Taylor Davis
(Advisor: Prof. Brian C. Gunter)

will defend a doctoral thesis entitled,

The Improvement of Multi-Satellite Orbit Determination Through the Incorporation of Intersatellite Ranging Observations

Thursday, December 2 at 5:00 p.m.
Montgomery Knight Building 317

 

Abstract
    For many satellite remote sensing and communications missions, particularly those involving a formation or constellation of satellites, having precise knowledge of the satellites’ positions in both an absolute and relative sense is essential. However, the capabilities of Global Navigation Satellite Systems (GNSS)-based precise orbit determination (POD) alone may not be enough to fulfill the mission’s requirements. This thesis examines potential gains to POD when additional Intersatellite Range (ISR) observations (range magnitude only, not range direction or rate) are combined with standard GNSS observables. These ISR observations can be obtained from simple radio frequency (RF) or optical sensors. The methodology behind the combination approach is described and illustrated through a series of simulated case studies involving multiple satellites in low Earth orbit (LEO) using realistic hardware-derived (where possible) measurement noise. The results demonstrate that substantial improvements (factor of two or better) in the POD of the constellation satellites can be obtained with even intermittent ranging measurements, and with only millimeter-level ranging precision. This improved positioning capability enables new mission concepts for small-satellite constellations and formations, and makes these multi-satellite systems resilient to disruptions in GNSS signal availability. This GNSS-denial could be due to a variety of factors, such as intermittent or total hardware failure, power-related duty cycling, or ground-based jamming. Results show that under appropriate phasing of periodic GNSS-denial, combined with the new information from the ISR observations, POD levels approaching the non-GNSS-denied case can be achieved. For the cases of region-specific or single-satellite total GNSS-denial, constellations with ISR capability can be designed to completely compensate for the loss of GNSS observations and perform at levels better than with GNSS alone. Furthermore, the GNSS-denied case has an extended application for providing ISR-only POD for constellations around planetary bodies through the inversion of the invariant non-spherical gravity fields. Case studies are presented using high resolution invariant Earth and lunar gravity fields.  In these example cases, ISR-only POD is demonstrated at the sub-meter level with the same millimeter precision of ISR. This research provides opportunities for new mission concepts that require precise positioning, improvements to mission operations, and enables new paradigms for orbit determination without access to GNSS.

 

Committee

  • Prof. Brian Gunter – School of Aerospace Engineering (advisor)
  • Prof. Glenn Lighsey– School of Aerospace Engineering
  • Prof. Koki Ho – School of Aerospace Engineering
  • Dr. Eric Gustafson – Technical Group Supervisor, NASA Jet Propulsion Laboratory
  • Dr. Jill Seubert – Orbit Determination Lead, Mars 2020, NASA Jet Propulsion Laboratory

Additional Information

In Campus Calendar
No
Groups

Graduate Studies

Invited Audience
Faculty/Staff, Public, Undergraduate students
Categories
Other/Miscellaneous
Keywords
Phd Defense
Status
  • Created By: Tatianna Richardson
  • Workflow Status: Published
  • Created On: Nov 12, 2021 - 2:22pm
  • Last Updated: Nov 12, 2021 - 2:22pm