Ph.D. Dissertation Defense - Matthew O'Shaughnessy

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday September 27, 2021
      11:00 am - 1:00 pm
  • Location: bluejeans.com/371140483/2698
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Structure and Causality in Understanding Complex Systems

Full Summary: No summary paragraph submitted.

TitleStructure and causality in understanding complex systems

Committee:

Dr. Mark Davenport, ECE, Chair, Advisor

Dr. Christopher Rozell, ECE, Co-Advisor

Dr. Matthieu Bloch, ECE

Dr. Swati Gupta, ISyE

Dr. Richard Barke, PUBP

Dr. Lav Varshney, UIUC

Abstract: A central goal of science and engineering is to understand the causal structure of complex computational, physical, and social systems. Inferring this causal structure without performing experiments, however, is often extremely challenging. This thesis develops new mathematical approaches for exploiting the structure underlying many types of data to reveal insights about the causal relationships governing complex systems. The work consists of four aims, each of which leverages structure and causal modeling to understand a different type of system. In the first aim, we develop an algorithm based on the sparse Bayesian learning (SBL) framework for exploiting sparse and temporal structure in order to more efficiently collect data from time-varying high-dimensional systems. In the second aim, we develop a framework for explaining the operation of black-box machine learning classifiers using a causal model of how the data and classifier output are generated. In the third aim, we analyze a class of algorithms that use low-dimensional structure to infer causal interactions in coupled dynamical systems. In the final aim, we use surveys of the public and AI practitioners to model attitudes toward artificial intelligence adoption and governance, and employ the model to answer policy-relevant questions about AI governance.

Additional Information

In Campus Calendar
No
Groups

ECE Ph.D. Dissertation Defenses

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
Phd Defense, graduate students
Status
  • Created By: Daniela Staiculescu
  • Workflow Status: Published
  • Created On: Sep 10, 2021 - 2:44pm
  • Last Updated: Sep 10, 2021 - 3:11pm