*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
The Signal-to-Noise Paradox in Climate Simulations and Prediction
One of the emerging topics in climate prediction is the issue of the so-called “signal-to-noise paradox”, characterized by too small signal-to-noise ratio in current model predictions that cannot reproduce the signal in the real world. Recent studies have suggested that seasonal-to-decadal climate can be more predictable than ever expected due to this paradox. However, the mechanism behind the signal-to-noise paradox has yet to be fully understood.
This study introduces a Markov model framework to represent the ensemble forecasts and the signal-to-noise paradox. The simulations suggest that the paradox is primarily due to the shorter persistence or overestimated noise variance in models than the observational estimates. The Markov model framework is applied to determine the existence of the paradox in CMIP5 and CMIP6 models, with respect to the NAO index and surface climate, including sea level pressure, precipitation, and sea surface temperature. The results suggest that the signal-to-noise paradox is widespread in current global climate models but can potentially be ameliorated with high-resolution ocean models.