*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Avani Gupta
[Advisor: Prof. Lakshmi Sankar]
will defend a doctoral thesis entitled
Application of an Extended Messinger Model for Ice Accretion on Complex Geometries
On
Thursday, September 23 at 1 PM
Montgomery Knight 317
https://bluejeans.com/568440634/5222
Abstract
Ice accretion can significantly degrade the performance, stability, availability, and affordability of an airborne vehicle. It is imperative that this phenomenon be modeled accurately. While ice accretion studies have been performed on airplane wings, propellers, and helicopter blades, there are very few attempts to model the process on more complex geometries such as fuselages. In this study, an existing in-house Extended Messinger methodology is generalized for complex geometries by modeling the flow field and water droplet transport on unstructured grids, and carrying out the ice accretion calculations along surface streamlines.
A general framework has been developed, allowing the use of two-dimensional and three-dimensional, structured, and unstructured, public domain and commercial CFD analyses. The methodology is primarily spilt into three steps: the continuum flow field analysis, the dispersed water phase computations, and the ice accretion module. In the present study, in-house methodologies as well as commercial solvers such as STAR-CCM+ and ANSYS Fluent have been used for the flow field and droplet dispersed phase computations. The in-house methodologies for the dispersed water droplet transport are done using an Eulerian approach, with a one-way interaction between the air flow and the dispersed phase via the drag force exerted on the droplets by the air flow. The ice accretion is carried out along surface streamlines, or optionally along two-dimensional section cuts, using an in-house icing methodology based on the Extended-Messinger model.
The predictions from the present approach are compared to available experimental data, and predictions using other solvers such as LEWICE and STAR-CCM+. Several configurations with varying levels of complexity are modeled. These include 2-D airfoils, swept wings, and helicopter fuselage configurations. Time and space sensitivity studies have been done.
Committee