Ph.D. Dissertation Defense - Ningquan Wang

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday April 26, 2021
      10:00 am - 12:00 pm
  • Location: https://bluejeans.com/526137678
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Computational Analysis of Code-Multiplexed Coulter Sensor Signals

Full Summary: No summary paragraph submitted.

TitleComputational Analysis of Code-Multiplexed Coulter Sensor Signals

Committee:

Dr. Fatih Sarioglu, ECE, Chair , Advisor

Dr. David Anderson, ECE

Dr. Albert Frazier, ECE

Dr. Pamela Bhatti, ECE

Dr. Hang Lu, CHBE

Abstract: Nowadays, lab-on-a-chip (LoC) technology has been applied in a variety of applications because of its capability to perform accurate microscale manipulations of cells for point-of-care diagnostics. On the other hand, such a result is not readily available from an LoC device and typically still requires a post-inspection of the chip using traditional laboratory equipment such as a microscope, negating the advantages of the LoC technology. To solve this dilemma, my doctoral research mainly focuses on developing portable and disposable biosensors for interfacing with and digitizing the information from an LoC system. Our sensor platform, integrated with multiple microfluidic impedance sensors, electrically monitors and tracks manipulated cells on an LoC device. The sensor platform compresses information from each sensor into a 1-dimensional electrical waveform, and therefore, further signal processing is required to recover the readout of each sensor and extract information of detected cells. Furthermore, with the capability of the sensor platform, we have introduced integrated microfluidic cytometers to characterize properties of cells such as cell surface expression and mechanical properties.

Additional Information

In Campus Calendar
No
Groups

ECE Ph.D. Dissertation Defenses

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
Phd Defense, graduate students
Status
  • Created By: Daniela Staiculescu
  • Workflow Status: Published
  • Created On: Apr 23, 2021 - 12:54pm
  • Last Updated: Apr 23, 2021 - 12:54pm