*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Siddarth Niranjan Babu
(Advisor: Prof. George Kardomateas]
will propose a doctoral thesis entitled,
Closed/Semi-Closed Form Solutions for Face/Core Debonds in Sandwich Beams
On
Thursday, April 29 at 11:00 a.m.
BlueJeans Link: https://bluejeans.com/703476071
Abstract
Sandwich beams are highly susceptible to debonding at the interface between face and core. These debonds can grow and eventually lead to complete failure of the structure. To understand and study such debonds, an Elastic Foundation Analysis (EFA) can be used to incorporate the effects of crack tip deformation in beam theory. In this model, EFA is extended further to better capture the effects of transverse shear and crack face contact. Unlike most models, this approach can be applied for both isotropic and orthotropic face & core materials. The approach uses both normal and rotational springs in the elastic foundation in the bonded region of the beam to capture transverse shear effects. Timoshenko beam theory introduces a rotational degree of freedom to the beam element and the rotational springs are used to capture it. The model is comprehensive and includes both the deformation of the debonded part and the substrate. Double Cantilever Beam (DCB) and Single Cantilever Beam (SCB) specimens are chosen to demonstrate the procedure to obtain Mode-I fracture parameters.
In the case of Mode-II fracture, the effects of crack face contact are significant. The proposed model extends EFA by introducing a tensionless spring foundation in the cracked region. Tensionless springs are used to capture the compressive stresses across the interface between the debonded face sheet and the substrate. The absence of tensile stresses in the foundation is because when there is tension the debonded face sheet lifts away from the substrate. Apart from compressive stresses, there will also be frictional forces acting between the crack faces. So, in addition to tensionless springs, shear springs are also included in the foundation to model friction. An End Notched Flexure (ENF) specimen is chosen to demonstrate Mode-II fracture. Expressions for energy release rates are obtained using J-Integral and solutions for mode partitioning are obtained using the axial and transverse displacements near the crack tip. Results obtained from these expressions are compared with results from finite element models. The proposed model will be comprehensive, efficient and would not compromise the accuracy of the results when compared with other models(from literature).
Committee