SCS Seminar Talk: Dylan Foster

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Tuesday March 30, 2021
      11:00 am - 12:00 pm
  • Location: BlueJeans
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Tess Malone, Communications Officer

tess.malone@cc.gatech.edu

Summaries

Summary Sentence: Bridging Learning and Decision Making

Full Summary: No summary paragraph submitted.

Media
  • Dylan Foster Dylan Foster
    (image/jpeg)

TITLE: Bridging Learning and Decision Making

ABSTRACT:

Machine learning is becoming widely used in decision making, in domains ranging from personalized medicine and mobile health to online education and recommendation systems. While (supervised) machine learning traditionally excels at prediction problems, decision making requires answering questions that are counterfactual in nature, and ignoring this mismatch leads to unreliable decisions. As a consequence, our understanding of the algorithmic foundations for data-driven decision making is limited, and efficient algorithms are typically developed on an ad hoc basis. Can we bridge this gap and make decision making as easy as machine learning? Focusing on the contextual bandit, a core problem in data-driven decision making, we bridge the gap by providing the first optimal and efficient reduction to supervised machine learning. The algorithm allows users to seamlessly apply off-the-shelf supervised learning models and methods to make decisions on the fly, and has been implemented in widely-used, industry-standard tools for decision making. Our results advance a broader program to develop a universal algorithm design paradigm for data-driven decision making. I will close the talk by discussing challenges and opportunities in building such a framework, including efforts to extend our developments to difficult reinforcement learning problems in large state spaces.
 

BIO:

Dylan Foster is a postdoctoral fellow at the MIT Institute for Foundations of Data Science. He holds a Ph.D. in computer science from Cornell University, where he was advised by Karthik Sridharan. He has received several awards, including the best paper award at COLT (2019), best student paper award at COLT (2018, 2019), Facebook Ph.D. fellowship, and NDSEG PhD fellowship. His research focuses on problems at the intersection of learning and decision making.

JOIN TALK HERE: https://bluejeans.com/946032411

Additional Information

In Campus Calendar
No
Groups

College of Computing, School of Computer Science

Invited Audience
Faculty/Staff, Postdoc, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Tess Malone
  • Workflow Status: Published
  • Created On: Mar 26, 2021 - 5:05pm
  • Last Updated: Mar 26, 2021 - 5:06pm