*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Name: Yunan Luo
Date/Time: Tuesday, February 2 at 11:00 am
Link: https://bluejeans.com/337476694
Presentation title: Machine learning for large- and small-data biomedical discovery
Abstract: In modern biomedicine, the role of computation becomes more crucial in light of the ever-increasing growth of biological data, which requires effective computational methods to integrate them in a meaningful way and unveil previously undiscovered biological insights. In this talk, I will discuss my research on machine learning for large- and small-data biomedical discovery. First, I will describe a representation learning algorithm for the integration of large-scale heterogeneous data to disentangle out non-redundant information from noises and to represent them in a way amenable to comprehensive analyses; this algorithm has enabled several successful applications in drug repurposing. Next, I will present a deep learning model that utilizes evolutionary data and unlabeled data to guide protein engineering in a small-data scenario; the model has been integrated into lab workflows and enabled the engineering of new protein variants with enhanced properties. I will conclude my talk with future directions of using data science methods to assist biological design and to support decision making in biomedicine.
Bio: Yunan Luo (http://yunan.cs.illinois.edu/) is a Ph.D. student advised by Prof. Jian Peng in the Department of Computer Science, University of Illinois at Urbana-Champaign. Previously, he received his Bachelor’s degree in Computer Science from Tsinghua University in 2016. His research interests are in computational biology and machine learning. His research has been recognized by a Baidu Ph.D. Fellowship and a CompGen Ph.D. Fellowship.