ARC Colloquium: Shalev Ben-David (Univ. of Waterloo)

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday April 19, 2021
      11:00 am - 12:00 pm
  • Location: Virtual via Bluejeans
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Forecasting Algorithms, Minimax Theorems, and Randomized Lower Bounds - Virtual via Bluejeans at 11:00am

Full Summary: No summary paragraph submitted.

Algorithms & Randomness Center (ARC)

Shalev Ben-David (Univ. of Waterloo)

Monday, April 19, 2021

Virtual via Bluejeans - 11:00 am

 

Title: Forecasting Algorithms, Minimax Theorems, and Randomized Lower Bounds

Abstract: I will present a new approach to randomized lower bounds, particularly in the setting where we wish to give a fine-grained analysis of randomized algorithms that achieve small bias. The approach is as follows: instead of considering ordinary randomized algorithms which give an output in {0,1} and may err, we switch models to look at "forecasting" randomized algorithms which output a confidence in [0,1] for whether they think the answer is 1. When scored by a proper scoring rule, the performance of the best forecasting algorithm is closely related to the bias of the best (ordinary) randomized algorithm, but is more amenable to analysis.

As an application, I'll present a new minimax theorem for randomized algorithms, which can be viewed as a strengthening of Yao's minimax theorem. Yao's minimax theorem guarantees the existence of a hard distribution for a function f such that solving f against this distribution (to a desired error level) is as hard as solving f in the worst case (to that same error level). However, the hard distribution provided by Yao's theorem depends on the chosen error level. Our minimax theorem removes this dependence, giving a distribution which certifies the hardness of f against all bias levels at once. In recent work, we used this minimax theorem to give a tight composition theorem for randomized query complexity.

Based on joint work with Eric Blais.

----------------------------------

Speaker's Webpage

Videos of recent talks are available at: http://arc.gatech.edu/node/121

Click here to subscribe to the seminar email list: arc-colloq@Klauscc.gatech.edu

Additional Information

In Campus Calendar
No
Groups

ARC

Invited Audience
Faculty/Staff, Postdoc, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Francella Tonge
  • Workflow Status: Published
  • Created On: Jan 27, 2021 - 10:00am
  • Last Updated: Apr 9, 2021 - 7:55am