ARC Colloquium: Richard Peng (Georgia Tech)

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday August 31, 2020 - Tuesday September 1, 2020
      11:00 am - 11:59 am
  • Location: Virtual via Bluejeans
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Solving Sparse Linear Systems Faster than Matrix Multiplication: Virtual via Bluejeans at 11:00am

Full Summary: No summary paragraph submitted.

Algorithms & Randomness Center (ARC)

Richard Peng (Georgia Tech)

Monday, August 31, 2020

Virtual via Bluejeans - 11:00 am

 

Title: Solving Sparse Linear Systems Faster than Matrix Multiplication

Abstract:  Can linear systems be solved faster than matrix multiplication? While there has been remarkable progress for the special cases of graph structured linear systems, in the general setting, the bit complexity of solving an n-by-n linear system Ax=b is n^\omega, where \omega<2.372864 is the matrix multiplication exponent. Improving on this has been an open problem even for sparse linear systems with poly(n) condition number.

We present an algorithm that solves linear systems in sparse matrices asymptotically faster than matrix multiplication for any \omega>2. This speedup holds for any input matrix A with o(n^{\omega -1}/\log(\kappa(A))) non-zeros, where \kappa(A) is the condition number of A. For poly(n)-conditioned matrices with O(n) nonzeros, and the current value of \omega, the bit complexity of our algorithm to solve to within any 1/poly(n) error is O(n^{2.331645}).

Our algorithm can be viewed as an efficient, randomized implementation of the block Krylov method via recursive low displacement rank factorizations. It is inspired by the algorithm of [Eberly et al. ISSAC `06 `07] for inverting matrices over finite fields. In our analysis of numerical stability, we develop matrix anti-concentration techniques to bound the smallest eigenvalue and the smallest gap in eigenvalues of semi-random matrices.

Joint work with Santosh Vempala, manuscript at https://arxiv.org/abs/2007.10254.

----------------------------------

Speaker's Webpage

Videos of recent talks are available at: http://arc.gatech.edu/node/121

Click here to subscribe to the seminar email list: arc-colloq@Klauscc.gatech.edu

Additional Information

In Campus Calendar
No
Groups

ARC

Invited Audience
Faculty/Staff, Postdoc, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Francella Tonge
  • Workflow Status: Published
  • Created On: Aug 10, 2020 - 12:11pm
  • Last Updated: Aug 25, 2020 - 3:02pm