ARC Colloquium: Matthew Fahrbach (Google Research)

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday November 2, 2020 - Tuesday November 3, 2020
      11:00 am - 11:59 am
  • Location: Virtual via Bluejeans
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Edge-Weighted Online Bipartite Matching: Virtual via Bluejeans at 11:00am

Full Summary: No summary paragraph submitted.

Algorithms & Randomness Center (ARC)

Matthew Fahrbach

Monday, November 2, 2020

Virtual via Bluejeans - 11:00 am

 

Title: Edge-Weighted Online Bipartite Matching

Abstract:  Online bipartite matching is one of the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) introduced an elegant algorithm for the unweighted bipartite matching that achieves an optimal competitive ratio of 1-1/e. Aggarwal et al. (SODA 2011) later generalized their algorithm and analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem aside from the trivial 1/2-competitive greedy algorithm. In this paper, we present the first online algorithm that breaks the long-standing 1/2 barrier and achieves a competitive ratio of at least 0.5086. In light of the hardness result of Kapralov, Post, and Vondrák (SODA 2013) that restricts beating a 1/2 competitive ratio for the more general problem of monotone submodular welfare maximization, our result can be seen as strong evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in the online setting.

The main ingredient in our online matching algorithm is a novel subroutine called online correlated selection (OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique is of independent interest and will find further applications in other online optimization problems.

----------------------------------

Speaker's Webpage

Videos of recent talks are available at: http://arc.gatech.edu/node/121

Click here to subscribe to the seminar email list: arc-colloq@Klauscc.gatech.edu

Additional Information

In Campus Calendar
No
Groups

ARC

Invited Audience
Faculty/Staff, Postdoc, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Francella Tonge
  • Workflow Status: Published
  • Created On: Aug 10, 2020 - 12:03pm
  • Last Updated: Oct 27, 2020 - 8:12am