Ph.D. Dissertation Defense - Sensen Li

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Friday July 17, 2020 - Saturday July 18, 2020
      10:00 am - 11:59 am
  • Location: https://bluejeans.com/320798403
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Millimeter-Wave CMOS Transceiver Front-end Circuits for Future Energy-efficient, Linear, and Wideband Communication Systems

Full Summary: No summary paragraph submitted.

TitleMillimeter-Wave CMOS Transceiver Front-end Circuits for Future Energy-efficient, Linear, and Wideband Communication Systems

Committee:

Dr. Hua Wang, ECE, Chair , Advisor

Dr. John Cressler, ECE

Dr. Gee-Kung Chang, ECE

Dr. Andrew Peterson, ECE

Dr. John Papapolymerou, Michigan State

Dr. Kenichi Okada, Tokyo Institute of Technology

Abstract: To address the exponentially growing data-rate demand, it is envisioned that mm-Wave will be extensively employed in 5G-and-beyond communication system for its broader spectra and proportionate increases of channel capacity. Viable mm-Wave TX front-end solutions are expected to support multi-Gbps spectrum-efficiency modulated signals, such as high-order QAMs. The corresponding large PAPRs of the high-order QAM and OFDM push the already stringent linearity-efficiency requirements on the deployed TXs/PAs. On one hand, the TX/PA must exhibit excellent linearity over a large dynamic range to maintain the signal fidelity. On the other hand, the TX/PA should enhance its efficiency at PBO to minimize overall power consumption and thus alleviate thermal management. Feasible mm-Wave RX front-end solutions should achieve high sensitivity and linearity while maintaining a wide bandwidth to handle high-speed and high-order modulated signals. A low RX noise figure and the resulting high RX sensitivity are essential to compensate the high path loss at mm-Wave in wireless communication. Moreover, massive MIMO and phased array architectures are extensively utilized to improve mm-Wave link performance and spatial diversity via beamforming. A high linearity RX implementation is required to avoid decorrelations among the MIMO/phased-array elements and mitigate intermodulation distortions during concurrent multi-beams/streams receiving. My Ph.D. research aims to exploit new circuit architectures and techniques to address the mm-Wave transceiver design challenges.

Additional Information

In Campus Calendar
No
Groups

ECE Ph.D. Dissertation Defenses

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
Phd Defense, graduate students
Status
  • Created By: Daniela Staiculescu
  • Workflow Status: Published
  • Created On: Jul 6, 2020 - 6:36pm
  • Last Updated: Jul 7, 2020 - 9:25am