Ph.D. Dissertation Defense - Boqi Xie

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Friday June 26, 2020 - Saturday June 27, 2020
      4:00 pm - 5:59 pm
  • Location: https://bluejeans.com/2930832914
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: An Object-Oriented Distribution System Distributed Quasi-Dynamic State Estimator

Full Summary: No summary paragraph submitted.

TitleAn Object-Oriented Distribution System Distributed Quasi-Dynamic State Estimator

Committee:

Dr. Sakis Meliopoulos, ECE, Chair , Advisor

Dr. Daniel Molzahn, ECE

Dr. Santiago Grijalva, ECE

Dr. Lukas Graber, ECE

Dr. Shijie Deng, ISyE

Abstract: This dissertation develops an object-oriented distribution system distributed quasi-dynamic state estimator (DS-DQDSE) that constantly monitors the states of the distribution system and provides the validated data to the control center. In particular, the dissertation presents a distributed and seamless infrastructure starting from measurement data from sensors installed across distribution systems to estimated states and system model output from the state estimator. To automate the whole procedure as well as to guarantee the accuracy of the output results from the state estimator, an object-oriented physically based high-fidelity device modeling approach is adopted. Given measurements and device models from a selected section, a network-level measurement model is created. The network-level measurement model is augmented with derived, pseudo, and virtual measurements to achieve observability and increase redundancy. The measurement model is then processed by the state estimator, which provides the best estimates of the monitored system and the confidence level that evaluates if the measurements are consistent with the system model. The output of the state estimator including estimated states, estimated measurements, and validated model of the monitored system are then transmitted to the control center where the states and the model of the whole system are synthesized. Since the designed DS-DQDSE adopts quasi-dynamic state estimation (QDSE) while conventional state estimator adopts static state estimation (SSE), a comparison study between QDSE and SSE is presented. Furthermore, the developed DS-DQDSE is applied on two real feeder models. The results show that the developed DS-DQDSE is applicable to the distribution systems with DER penetration.

Additional Information

In Campus Calendar
No
Groups

ECE Ph.D. Dissertation Defenses

Invited Audience
Public
Categories
Other/Miscellaneous
Keywords
Phd Defense, graduate students
Status
  • Created By: Daniela Staiculescu
  • Workflow Status: Published
  • Created On: Jun 9, 2020 - 4:14pm
  • Last Updated: Jun 9, 2020 - 4:14pm