School of Public Policy Study Harnesses Deep Learning to Drive Electric Vehicle Policy

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Contact

Michael Pearson
michael.pearson@iac.gatech.edu

Sidebar Content
No sidebar content submitted.
Summaries

Summary Sentence:

A new study reveals driver perceptions about the electric vehicle charging network while demonstrating how deep learning techniques can be deployed for analysis of streaming data in near real-time.

Full Summary:

A new study reveals driver perceptions about the electric vehicle charging network while demonstrating how deep learning techniques can be deployed for analysis of streaming data in near real-time.

Media
  • Omar Asensio Omar Asensio
    (image/png)

A new study from the Georgia Institute of Technology School of Public Policy harnesses machine learning techniques to provide the best insight yet into the attitudes of electric vehicle (EV) drivers towards the existing charger network. The study findings could help policymakers focus their efforts.

In the paper, published in the June 2020 issue in Nature Sustainability, a team led by Assistant Professor Omar Isaac Asensio trained a machine learning algorithm to analyze unstructured consumer data from 12,270 electric vehicle charging stations across the United States.

The study demonstrates how machine learning tools can be used to quickly analyze streaming data for policy evaluation in near real-time (see sidebar). Streaming data refers to data that comes in a feed, continuously, such as user reviews from an app. The study also revealed surprising findings about how EV drivers feel about charging stations.

For instance, it turns out that the conventional wisdom that drivers prefer private stations to public ones appears to be wrong. The study also finds potential problems with charging stations in the bigger cities, presaging challenges yet to come in creating a robust charging system that meets drivers' needs.

“Based on evidence from consumer data, we argue that it is not enough to just invest money into increasing the quantity of stations, it is also important to invest in the quality of the charging experience,” Asensio wrote.

To read the full story, visit https://www.iac.gatech.edu/research/features/deep-learning-electric-vehicle-charging-research.

Additional Information

Groups

Ivan Allen College of Liberal Arts, School of Public Policy

Categories
No categories were selected.
Related Core Research Areas
Public Service, Leadership, and Policy
Newsroom Topics
No newsroom topics were selected.
Keywords
No keywords were submitted.
Status
  • Created By: mpearson34
  • Workflow Status: Published
  • Created On: Jun 2, 2020 - 2:20pm
  • Last Updated: Jun 2, 2020 - 2:23pm