*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Committee:
C. Ross Ethier, PhD, Co-Advisor (Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University)
Machelle Pardue, PhD, Co-Advisor (Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University)
Brandon Dixon, PhD (George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology)
Mark Prausnitz, PhD (Chemical and Biomolecular Engineering, Georgia Institute of Technology)
Brian Samuels, MD, PhD (Department of Ophthalmology, University of Alabama, Birmingham)
Stiffening the Posterior Rat Sclera to Provide Neuroprotection in Glaucoma
Glaucoma is the leading cause of irreversible blindness in the world, expected to affect approximately 80 million people by the year 2020. This degenerative optic neuropathy is characterized by retinal ganglion cell (RGC) death, optic nerve damage, and progressive vision loss. While the exact etiology remains elusive, elevated intraocular pressure (IOP) is a known risk factor and lowering IOP remains the only effective treatment. Elevated IOP causes deformation and remodeling of the optic nerve head (ONH) tissues, which in turn is thought to promote localized neurodegeneration. Computational and ex vivo studies have shown that scleral stiffness strongly influences deformation of the ONH, and that increasing the stiffness of the sclera surrounding the ONH (the peripapillary sclera) can significantly reduce these excessive strains. We hypothesize that by crosslinking the collagenous peripapillary sclera, we will reduce mechanical deformation in the ONH, which will in turn mitigate glaucomatous vision loss.
To investigate this hypothesis, we developed a safe and efficacious scleral stiffening treatment using the collagen crosslinking agent, genipin through ex vivo and in vivo experiments in healthy rat eyes. We then evaluated our treatment’s efficacy to prevent glaucomatous damage in a microbead rat model of ocular hypertension. Our results indicate that scleral stiffening protects against retinal thinning but does not show protective effects on visual or retinal function, nor preservation of RGC axons. Overall, these results demonstrate the feasibility of using genipin for a scleral stiffening treatment. The absence of a strong protective effect of genipin-induced scleral stiffening on RGC function and structure may be due to limitations in the glaucomatous rat model, in that our model does not mirror the slow progression, nor the moderate IOP elevation characteristic of clinical glaucoma.