SCS Recruiting Seminar: Vatsal Sharan

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday April 9, 2020 - Friday April 10, 2020
      11:00 am - 11:59 am
  • Location: BlueJeans
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Tess Malone, Communications Officer

tess.malone@cc.gatech.edu

Summaries

Summary Sentence: Modern Perspectives on Classical Learning Problems: Role of Memory and Data Amplification

Full Summary: No summary paragraph submitted.

Media
  • Vatsal Sharan Vatsal Sharan
    (image/jpeg)

TITLE: Modern Perspectives on Classical Learning Problems: Role of Memory and Data Amplification

ABSTRACT:

This talk will discuss statistical and computation requirements — and how they interact — for three learning setups. In the first part, we inspect the role of memory in learning. We study how the total memory available to a learning algorithm affects the amount of data needed for learning (or optimization), beginning by considering the fundamental problem of linear regression. Next, we examine the role of long-term memory vs. short-term memory for the task of predicting the next observation in a sequence given the past observations. Finally, we explore the statistical requirements for the task of manufacturing more data — namely how to generate a larger set of samples from an unknown distribution. Can “amplifying” a dataset be easier than learning?

BIO:

Vatsal Sharan is a Ph.D. student at Stanford, advised by Greg Valiant. He is a part of the Theory group and the Statistical Machine Learning group, and his primary interests are in the theory and practice of machine learning.

 

Additional Information

In Campus Calendar
No
Groups

College of Computing, School of Computer Science

Invited Audience
Faculty/Staff, Postdoc, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Tess Malone
  • Workflow Status: Published
  • Created On: Apr 2, 2020 - 4:44pm
  • Last Updated: Apr 2, 2020 - 4:46pm