*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
THE SCHOOL OF MATERIALS SCIENCE AND ENGINEERING
GEORGIA INSTITUTE OF TECHNOLOGY
Under the provisions of the regulations for the degree
DOCTOR OF PHILOSOPHY
on Thursday, March 12, 2020
9:00 AM
in CoC 053
will be held the
DISSERTATION DEFENSE
for
Yung Suk “Jeremy” Yoo
"Effects of Dispersoids on Crack Initiation in AA6451 and Crack Propagation in AA3xxx"
Committee Members:
Prof. Joshua Kacher, Advisor, MSE
Prof. Christopher Muhlstein, MSE
Prof. Richard Neu, MSE/ME
Prof. Olivier Pierron, ME
Sazol Das, Ph.D., Novelis Inc.
Abstract:
Aluminum alloys have been enjoying the spotlight in recent years as the next generation alloy for a wide variety of applications. Their potentially waste-free recyclability, excellent corrosion resistance, and desirable balance in physical properties—low density and high strength-to-weight ratio—makes them an ideal candidate material for efficient and environmentally-friendly products. Mechanical properties of aluminum alloys can be engineered to suit the requirements for different functions by controlling the microstructural features. Naturally, the variety of alloying elements, microstructural features, and thermomechanical processes produce complex microstructures that deform heterogeneously under different mechanical loading conditions. To get a better understanding of the failure mechanism of aluminum alloys, this dissertation will explore the effects of dispersoids, a type of second phase particle, on the crack initiation and propagation behaviors. A multiscale electron microscopy-approach was employed to characterize different aspects of the microstructure and their localized deformation behavior.
This work is divided into two parts. The first part will delve into the crack initiation mechanism of AA6451 during three-point bending and the influence of dispersoids on each step of the process. It will also discuss the effects of variation in alloying elements and tempering conditions on the microstructure evolution and localized deformation behavior of AA6451. The second part involves studying the crack propagation behavior of deep drawn and necked AA3xxx. The dispersoid effects on crack growth direction will be discussed in depth. These findings will ultimately help scientists gain a better mechanistic understanding of defect interactions during extreme stress.