ARC Colloquium: Maryam Aliakbarpour

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday March 2, 2020 - Tuesday March 3, 2020
      10:00 am - 10:59 am
  • Location: Klaus 1116 East
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Distribution testing: Classical and new paradigms - Klaus 1116 East at 10am

Full Summary: No summary paragraph submitted.

Algorithms & Randomness Center (ARC)

Maryam Aliakbarpour (MIT)

Monday, March 2, 2020

Klaus 1116 East - 10:00 am

 

Title:  Distribution testing:  Classical and new paradigms

Abstract:  One of the most fundamental problems in learning theory is to view input data as random samples from an unknown distribution and then to make statistical inferences about the underlying distribution. In this talk, we focus on a notable example of such a statistical task: testing properties of distributions. The goal is to design an algorithm that uses as few samples as possible from a distribution and distinguishes whether the distribution has the property, or it is $\epsilon$-far in $\ell_1$-distance from any distribution which has the property. In this talk, we explore several questions in the framework of distribution testing, such as (i) Is the distribution uniform? Or, is it far from being uniform? (ii) Is a pair of random variables independent or correlated? (iii) Is the distribution monotone? Moreover, we discuss extensions of the standard testing framework to more practical settings. For instance, we consider the case where the sensitivity of the input samples (e.g., patients’ medical records) requires the design of statistical tests that ensure the privacy of individuals. We address this case by designing differentially private testing algorithms for several testing questions with (nearly)-optimal sample complexities.

----------------------------------

Speaker's Webpage

Videos of recent talks are available at: https://smartech.gatech.edu/handle/1853/46836

Click here to subscribe to the seminar email list: arc-colloq@Klauscc.gatech.edu

Additional Information

In Campus Calendar
No
Groups

ARC

Invited Audience
Faculty/Staff, Postdoc, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Francella Tonge
  • Workflow Status: Published
  • Created On: Feb 18, 2020 - 9:08am
  • Last Updated: Feb 24, 2020 - 10:46am