*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Title: Energy Efficient Architectures for Irregular Data Streams
Ph.D. Thesis Defense
Sriseshan Srikanth
Ph.D. Candidate
School of Computer Science
College of Computing
Georgia Institute of Technology
Date: Monday, March 2, 2020
Time: 10:00 AM to 12:30 PM Eastern Time
Location: KACB 3126
Committee:
Dr. Thomas M. Conte, Advisor, School of Computer Science Dr. Hyesoon Kim, School of Computer Science Dr. Tushar Krishna, School of Electrical and Computer Engineering Dr. Vivek Sarkar, School of Computer Science Dr. Erik P. DeBenedictis, Zettaflops, LLC
Abstract:
An increasing prevalence of data-irregularity is being seen in applications today, particularly in machine learning, graph analytics, high-performance computing and cybersecurity. Faced with fundamental technology constraints, architectures that have been designed around conventional assumptions on spatio-temporal locality are inefficient for these important domain areas. In this defense, I will provide an overview of my PhD thesis that proposes architectures to improve energy efficiency and performance by intelligently reducing data movement through the memory hierarchy for such data-irregular applications.
In particular, this talk will focus on near-memory acceleration of hyper-sparse data applications as well as processor-centric acceleration of moderately-sparse applications. Through novel sparse data representations, algorithms and programmable hardware, both of these approaches extract sequential locality from a dynamic, sparse data stream via intelligent data marshaling. As a result, an order of magnitude improvement in cache bandwidth utilization and reduction in DRAM row activations is seen across several sparse workloads, thus contributing to significant performance and energy benefits.