SCS Recruiting Seminar: Gagandeep Singh

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday February 20, 2020
      10:50 am - 11:50 am
  • Location: KACB 2456
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Tess Malone, Communications Officer

tess.malone@cc.gatech.edu

Summaries

Summary Sentence: Certified Artificial Intelligence

Full Summary: No summary paragraph submitted.

Media
  • Gagandeep Singh Gagandeep Singh
    (image/jpeg)

TITLE: Certified Artificial Intelligence

ABSTRACT:

Despite remarkable success over the last decade, increasing evidence pointing to the fragility of modern data-driven AI systems has started to emerge, triggering social concerns, government regulations, and limiting wider adoption. Indeed, creating AI systems that behave safely and reliably is a fundamental challenge of critical importance. In this talk, I will present a path towards addressing this fundamental problem. Specifically, I will introduce new mathematical methods based on convex relaxations, sampling, and Lipschitz optimization that enable scalable and precise reasoning about the (potentially infinite number of) behaviors of an AI system (e.g., a deep neural network). I will then show how these methods enable both the creation of state-of-the-art automated verifiers for modern AI systems and the discovery of new provable training techniques. Finally, I will outline several promising future research directions.

BIO:

Gagandeep Singh is a Ph.D. candidate at ETH Zurich supervised by Professors Martin Vechev and Markus Püschel. He completed his master’s from ETH and bachelor’s from the Indian Institute of Technology, Patna. His research interests lie at the intersection of automated reasoning and machine learning. He has built several systems now used in both academia and industry, including ELINA, a state-of-the-art library for fast numerical static analysis and ERAN, a state-of-the-art verifier for deep neural networks.

 

 

Additional Information

In Campus Calendar
No
Groups

College of Computing, School of Computer Science

Invited Audience
Faculty/Staff, Postdoc, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Tess Malone
  • Workflow Status: Published
  • Created On: Feb 11, 2020 - 12:16pm
  • Last Updated: Feb 11, 2020 - 12:18pm