SCS Recruiting Seminar: Noah Stephens-Davidowitz

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday February 6, 2020 - Friday February 7, 2020
      11:00 am - 11:59 am
  • Location: KACB 1116W
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Tess Malone, Communications Officer

tess.malone@cc.gatech.edu

Summaries

Summary Sentence: Foundations of Lattice-Based Cryptography

Full Summary: No summary paragraph submitted.

Media
  • Noah Stephens-Davidowitz Noah Stephens-Davidowitz
    (image/jpeg)

TITLE: Foundations of Lattice-Based Cryptography

ABSTRACT:

There has been a recent revolution in cryptography due to the introduction of lattice-based constructions. These are cryptographic schemes whose security relies on the presumed hardness of certain computational problems over ubiquitous (and beautiful) geometric objects called lattices. Their many applications (e.g., fully homomorphic encryption) and security against adversaries with quantum computers has created some urgency to deploy lattice-based schemes widely over the next few years. For example, the National Institute of Standards and Technology is in the process of standardizing lattice-based cryptography, and Google has already implemented such a scheme in its Canary browser.

The security of the proposed schemes relies crucially on the assumption that our current best algorithms (both classical and quantum) for the relevant computational lattice problems cannot be improved by even a relatively small amount. I will discuss the state of the art in the study of this assumption. In particular, I will describe the fastest known algorithms for these problems (and potential directions to improve them) as well as a recent series of hardness results that use the tools of fine-grained complexity to provide strong evidence for the security of lattice-based cryptography.


BIO:

Noah Stephens-Davidowitz is the Microsoft Research Fellow at the Simons Institute in Berkeley. He has also been a postdoctoral researcher at MIT, Princeton, and the Institute for Advanced Study. He received his Ph.D. from NYU, where his dissertation won the Dean’s Outstanding Dissertation Award in the sciences.

Much of Stephens-Davidowitz's research uses the tools of theoretical computer science to answer fundamental questions about the security of widely deployed real-world cryptography, particularly post-quantum lattice-based cryptography. He is also interested more broadly in theoretical computer science, cryptography, and geometry.

Additional Information

In Campus Calendar
No
Groups

College of Computing, School of Computer Science

Invited Audience
Faculty/Staff, Postdoc, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Tess Malone
  • Workflow Status: Published
  • Created On: Jan 29, 2020 - 10:45am
  • Last Updated: Jan 29, 2020 - 11:53am