ISyE Seminar - Huajie Qian

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Thursday January 9, 2020 - Friday January 10, 2020
      11:00 am - 11:59 am
  • Location: ISyE Main Room 228
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Efficient Uncertainty Quantification in Simulation Analysis

Full Summary: Title: Efficient Uncertainty Quantification in Simulation Analysis Abstract: Simulation-based prediction, for instance in discrete-event analysis and machine learning, relies on models that often are contaminated with errors when calibrating from data. These errors, if overlooked, can result in incorrect inference and underestimation of risks that degrade decision-making. Existing approaches to quantify these errors face several challenges from high computational demand, undercoverage, to the opaqueness in parameter tuning. We present several methods to combat these issues, by injecting subsampling, distributionally robust optimization, and random perturbation respectively into simulation runs. We explain the statistical mechanisms of these approaches and why they help resolve each of the discussed challenges.

Title: Efficient Uncertainty Quantification in Simulation Analysis

Abstract: Simulation-based prediction, for instance in discrete-event analysis and machine learning, relies on models that often are contaminated with errors when calibrating from data. These errors, if overlooked, can result in incorrect inference and underestimation of risks that degrade decision-making. Existing approaches to quantify these errors face several challenges from high computational demand, undercoverage, to the opaqueness in parameter tuning. We present several methods to combat these issues, by injecting subsampling, distributionally robust optimization, and random perturbation respectively into simulation runs. We explain the statistical mechanisms of these approaches and why they help resolve each of the discussed challenges.

Bio: Huajie Qian is a Ph.D. candidate in the department of Industrial Engineering and Operations Research at Columbia University, advised by Henry Lam. His research borrows tools from statistics and machine learning to develop data-driven methodologies for stochastic simulation and optimization that can deal with uncertainties from data in an efficient and principled way. He received his M.S. degree in Applied and Interdisciplinary Mathematics from University of Michigan, and B.S. degree in Mathematics from Fudan University.

Additional Information

In Campus Calendar
Yes
Groups

School of Industrial and Systems Engineering (ISYE)

Invited Audience
Faculty/Staff, Postdoc, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: sbryantturner3
  • Workflow Status: Published
  • Created On: Dec 17, 2019 - 8:24am
  • Last Updated: Jan 3, 2020 - 2:31pm