*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Algorithms & Randomness Center (ARC)
Xiaoming Huo
Monday, November 11, 2019
Klaus 1116 East- 11:00 am
Title: Homotopic methods can significantly speed up the Computation of the Lasso-type of estimators
Abstract: In optimization, it is well known that when the objective functions are strictly convex, gradient based approaches can be extremely effective, and most likely achieve the exponential rate in convergence. At the same time, the Lasso-type of estimator in general cannot achieve the optimal rate due to the undesirable behavior of the absolute function at the origin. The homotopic approach is to use a sequence of surrogate functions to approximate the L1 penalty in the Lasso-type of estimators. The approximating functions will converge to the L1 penalty in the Lasso estimator. At the same time, each approximating function is strictly convex and facilitates efficient numerical convergence. We demonstrate that by meticulously defined the surrogate functions, one can approve faster numerical convergence rate than any existing methods in computing for the Lasso-type of estimators. Our numerical simulations validate the above claim. We demonstrate the applications of the proposed methods in some cases.
----------------------------------
Videos of recent talks are available at: https://smartech.gatech.edu/handle/1853/46836
Click here to subscribe to the seminar email list: arc-colloq@Klauscc.gatech.edu