ISyE Special Seminar- Antonius B. Dieker

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Friday November 8, 2019
      1:30 pm - 2:30 pm
  • Location: ISyE Main Room 126
  • Phone:
  • URL: ISyE Building Complex
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: QPLEX: A next-generation methodology for stochastic network analysis

Full Summary: Title:  QPLEX:  A next-generation methodology for stochastic network analysis Abstract:  QPLEX is a nonstationary, nonparametric, non-Markovian modeling and analysis paradigm for stochastic networks. QPLEX generates transient distributions of key performance metrics, such as the number of customers and the virtual waiting time at each station at all times. From a modeling perspective, QPLEX is quite versatile: for example, it can accommodate time-varying arrival processes, arbitrary time-varying service-time distributions, time-varying server counts, abandonments, balking, probabilistic routing and capacity/routing policies based on cycle-time distributions. In this talk, we will present a proof-of-concept that is remarkably accurate, widely applicable, and extremely fast. We will describe the mechanisms underlying the QPLEX calculus as well as the principles of QPLEX modeling. We will also discuss future directions and prospective application areas.  This is joint work with Steve Hackman (Georgia Tech).

Title:  QPLEX:  A next-generation methodology for stochastic network analysis

 

Abstract:  QPLEX is a nonstationary, nonparametric, non-Markovian modeling and analysis paradigm for stochastic networks. QPLEX generates transient distributions of key performance metrics, such as the number of customers and the virtual waiting time at each station at all times. From a modeling perspective, QPLEX is quite versatile: for example, it can accommodate time-varying arrival processes, arbitrary time-varying service-time distributions, time-varying server counts, abandonments, balking, probabilistic routing and capacity/routing policies based on cycle-time distributions.

 

In this talk, we will present a proof-of-concept that is remarkably accurate, widely applicable, and extremely fast. We will describe the mechanisms underlying the QPLEX calculus as well as the principles of QPLEX modeling. We will also discuss future directions and prospective application areas.  This is joint work with Steve Hackman (Georgia Tech).

Bio: Ton Dieker is Associate Professor of Industrial Engineering and Operations Research at Columbia University, and a member of Columbia’s Data Science Institute. He received an M.Sc. from Vrije Universiteit Amsterdam (2002) and a Ph.D. from University of Amsterdam (2006). Prior to joining Columbia, he was the Fouts Family Associate Professor at Georgia Tech. Honors and awards include the Goldstine Fellowship from IBM Research, the Erlang Prize from the INFORMS Applied Probability Society, and a PECASE Award from the White House. He serves/has served on the editorial board of several journals in Operations Research and Applied Probability.

Additional Information

In Campus Calendar
Yes
Groups

School of Industrial and Systems Engineering (ISYE)

Invited Audience
Faculty/Staff, Postdoc, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: sbryantturner3
  • Workflow Status: Published
  • Created On: Oct 24, 2019 - 1:13pm
  • Last Updated: Oct 24, 2019 - 1:38pm