*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
“Two Forms of Plasticity in Adult Visual Cortex”
Michael Stryker, Ph.D.
Professor
School of Medicine
University of California, San Francisco
Michael Stryker's laboratory studies the development and plasticity of the central visual system. Most of his laboratory's effort focuses on the role of neural activity in the primary visual cortex of the mouse, where they have identified a circuit that dramatically enhances activity-dependent plasticity in adult animals. They use 2-photon microscopy and electrophysiology to study genetically identified types of neurons in alert animals.
His laboratory's major interest is the in the mechanisms responsible for the development and plasticity of precise connections within the central nervous system, and particularly in the role of neural activity in this process. Most of the work performed is on the visual cortex of the mouse. In normal development, neural connections to and within the visual cortex are refined to high precision through the action of activity-dependent mechanisms of neural plasticity in combination with specific molecular signals. In experiments, the lab induces activity-dependent plasticity experimentally through manipulations of genetics or experience or by pharmacological or neurophysiological intervention in order to discover what cellular mechanisms and what changes in cortical circuitry are responsible for rapid, long lasting changes in neuronal responses. These changes are analyzed using microelectrode recordings, novel techniques for measurement of optical and metabolic signals related to neural activity, including 2-photon microscopy and intrinsic signal imaging, and anatomical and neurochemical tracing of connections.