*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Algorithms & Randomness Center (ARC)
Samuel Hopkins (Berkeley)
Monday, December 2, 2019
Klaus 1116 East- 11:00 am
Title: Robust Mean Estimation in Nearly-Linear Time
Abstract: Robust mean estimation is the following basic estimation question: given i.i.d. copies of a random vector X in d-dimensional Euclidean space of which a small constant fraction are corrupted, how well can you estimate the mean of the distribution? This is a classical problem in statistics, going back to the 60's and 70's, and has recently found application to many problems in reliable machine learning. However, in high dimensions, classical algorithms for this problem either were (1) computationally intractable, or (2) lost poly(d) factors in their accuracy guarantees. Recently, polynomial time algorithms have been demonstrated for this problem that still achieve (nearly) optimal error guarantees. However, the running times of these algorithms were either at least quadratic in dimension or in 1/(desired accuracy), running time overhead which renders them ineffective in practice. In this talk we give the first truly nearly linear time algorithm for robust mean estimation which achieves nearly optimal statistical performance. Our algorithm is based on the matrix multiplicative weights method. Based on joint work with Yihe Dong and Jerry Li, to appear in NeurIPS 2019.
----------------------------------
Videos of recent talks are available at: https://smartech.gatech.edu/handle/1853/46836
Click here to subscribe to the seminar email list: arc-colloq@Klauscc.gatech.edu