GT Neuro Seminar Series

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday November 11, 2019
      11:15 am - 12:15 pm
  • Location: Krone Engineered Biosystems Building, Room 1005 - Atlanta, GA
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Garrett Stanley

Summaries

Summary Sentence: "Neural Decoding and Control of Multiscale Brain Networks: From Motor to Mood" - Maryam Shanechi, Ph.D. - University of Southern California

Full Summary: No summary paragraph submitted.

Maryam Shanechi, Ph.D.
Assistant Professor
Viterbi Early Career Chair in Electrical and Computer Engineering
Viterbi School of Engineering
University of Southern California

“Neural Decoding and Control of Multiscale Brain Networks: From Motor to Mood”

In this talk, I first discuss our recent work on modeling, decoding, and controlling multisite human brain activity underlying mood states. I present a multiscale dynamical modeling framework that allows us, for the first time, to decode mood variations and identify brain sites that are most predictive of mood. I then develop a system identification approach that can predict large-scale brain network dynamics (output) in response to electrical stimulation (input) to enable closed-loop control of brain activity. Finally, I demonstrate that our modeling framework can uncover multiscale neural dynamics from hybrid spike-field activity in monkeys performing unconstrained movements and can further combine information from multiple scales of activity and model their different time-scales and statistical profiles. These models, decoders, and controllers could facilitate future closed-loop therapies for neurological and neuropsychiatric disorders and help probe neural circuits.

Related Links

Additional Information

In Campus Calendar
Yes
Groups

Parker H. Petit Institute for Bioengineering and Bioscience (IBB)

Invited Audience
Faculty/Staff, Postdoc, Graduate students
Categories
Seminar/Lecture/Colloquium
Keywords
go-PetitInstitute, IBB, go-neuro
Status
  • Created By: Floyd Wood
  • Workflow Status: Published
  • Created On: Sep 18, 2019 - 10:42am
  • Last Updated: Sep 18, 2019 - 10:42am