ISyE Statistic Seminar - Maxim Raginsky

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday September 9, 2019 - Tuesday September 10, 2019
      12:00 pm - 12:59 pm
  • Location: ISyE Main 228
  • Phone:
  • URL: ISyE Building
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Deep Generative Models in the Diffusion Limit

Full Summary:

Abstract: 

In deep generative models, the latent variable is generated by a time-inhomogeneous Markov chain, where at each time step we pass the current state through a parametric nonlinear map, such as a feedforward neural net, and add a small independent Gaussian perturbation. In this talk, based on joint work with Belinda Tzen, I will discuss the diffusion limit of such models, where we increase the number of layers while sending the step size and the noise variance to zero. I will first provide a unified viewpoint on both sampling and variational inference in such generative models through the lens of stochastic control. Then I will show how we can quantify the expressiveness of diffusion-based generative models. Specifically, I will prove that one can efficiently sample from a wide class of terminal target distributions by choosing the drift of the latent diffusion from the class of multilayer feedforward neural nets, with the accuracy of sampling measured by the Kullback-Leibler divergence to the target distribution. Finally, I will briefly discuss a scheme for unbiased, finite-variance simulation in such models. This scheme can be implemented as a deep generative model with a random number of layers.

Title: 

Deep Generative Models in the Diffusion Limit

Abstract: 

In deep generative models, the latent variable is generated by a time-inhomogeneous Markov chain, where at each time step we pass the current state through a parametric nonlinear map, such as a feedforward neural net, and add a small independent Gaussian perturbation. In this talk, based on joint work with Belinda Tzen, I will discuss the diffusion limit of such models, where we increase the number of layers while sending the step size and the noise variance to zero. I will first provide a unified viewpoint on both sampling and variational inference in such generative models through the lens of stochastic control. Then I will show how we can quantify the expressiveness of diffusion-based generative models. Specifically, I will prove that one can efficiently sample from a wide class of terminal target distributions by choosing the drift of the latent diffusion from the class of multilayer feedforward neural nets, with the accuracy of sampling measured by the Kullback-Leibler divergence to the target distribution. Finally, I will briefly discuss a scheme for unbiased, finite-variance simulation in such models. This scheme can be implemented as a deep generative model with a random number of layers.

Bio: 

Maxim Raginsky received the B.S. and M.S. degrees in 2000 and the Ph.D. degree in 2002 from Northwestern University, all in Electrical Engineering. He has held research positions with Northwestern, the University of Illinois at Urbana-Champaign (where he was a Beckman Foundation Fellow from 2004 to 2007), and Duke University. In 2012, he has returned to the UIUC, where he is currently an Associate Professor with the Department of Electrical and Computer Engineering, the Coordinated Science Laboratory, and the Department of Computer Science. His research interests cover probability and stochastic processes, deterministic and stochastic control, machine learning, optimization, and information theory. Much of his recent research is motivated by fundamental questions in modeling, learning, and simulation of nonlinear dynamical systems, with applications to advanced electronics, autonomy, and artificial intelligence.

Additional Information

In Campus Calendar
Yes
Groups

School of Industrial and Systems Engineering (ISYE)

Invited Audience
Faculty/Staff, Postdoc, Public, Graduate students, Undergraduate students
Categories
Conference/Symposium
Keywords
No keywords were submitted.
Status
  • Created By: Julie Smith
  • Workflow Status: Published
  • Created On: Sep 5, 2019 - 10:17am
  • Last Updated: Sep 5, 2019 - 10:17am