*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
This is one of a series of talks that are given by Professor Chen. The full list of his talks is as follows:
Wednesday, August 28, 2019; 11:00 am - 12:00 pm; Groseclose 402
Thursday, August 29, 2019; 11:00 am - 12:00 pm; Groseclose 402
Tuesday, September 3, 2019; 11:00 am - 12:00 pm; Main - Executive Education Room 228
Wednesday, September 4, 2019; 11:00 am - 12:00 pm; Main - Executive Education Room 228
Thursday, September 5, 2019; 11:00 am - 12:00 pm; Groseclose 402
Check https://triad.gatech.edu/events for more information.
For location information, please check https://isye.gatech.edu/about/maps-directions/isye-building-complex
Title of this talk: The projected power method: an efficient nonconvex algorithm for a joint discrete assignment from pairwise data
Abstract: Various applications involve assigning discrete label values to a collection of objects based on some pairwise noisy data. Due to the discrete---and hence nonconvex---structure of the problem, computing the optimal assignment (e.g. maximum likelihood assignment) becomes intractable at first sight.
This paper makes progress towards efficient computation by focusing on a concrete joint discrete alignment problem---that is, the problem of recovering n discrete variables given noisy observations of their modulo differences. We propose a low-complexity and model-free procedure, which operates in a lifted space by representing distinct label values in orthogonal directions, and which attempts to optimize quadratic functions over hypercubes. Starting with a first guess computed via a spectral method, the algorithm successively refines the iterates via projected power iterations. We prove that for a broad class of statistical models, the proposed projected power method makes no error---and hence converges to the maximum likelihood estimate---in a suitable regime. Numerical experiments have been carried out on both synthetic and real data to demonstrate the
practicality of our algorithm. We expect this algorithmic framework to be effective for a broad range of discrete assignment problems.
This is joint work with Emmanuel Candes.