*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
Exploiting Low-dimensional Structure and Optimal Transport for Tracking and Alignment
Committee:
Dr. Christopher Rozell, ECE, Chair , Advisor
Dr. Justin Romberg, ECE
Dr. Eva Dyer, BME
Dr. Mark Davenport, ECE
Dr. Craig Forest, ME
Abstract:
The objective of this thesis is to exploit low-dimensional structures (e.g., sparsity) and optimal transport theory to develop new tools for inference and distribution alignment problems. We investigate properties of structure at two scales: local structure of the single datum, and global structure across the dataset's entirety. To study local notions of structure, we consider the fundamental problem of support mismatch under the framework of signal inference: inference suffers when the signal support is poorly estimated. Popular metrics (e.g., Lp-norms) are particularly prone to mismatch due to its lack of machinery to describe geometric correlations between support locations. To fill this gap, we exploit optimal transport theory to propose a dynamical regularizer that "understands" geometry. In addition, we develop efficient methods to overcome the traditionally-prohibitive costs of using optimal transport in large-scale applications. To understand global notions of structure, we consider the challenging problem of distribution alignment, which spans fields such as machine learning, computer vision, and graph matching. To bypass the intractability of graph matching approaches, we approach this problem from a machine learning perspective and exploit statistical advantages of optimal transport to align distributions. We develop methods that incorporate manifold and cluster structures that are necessary to regularize against convergence to poor local-minima and demonstrate the superiority of our method on synthetic and real data. Finally, we present pioneering results in cluster-based alignability analysis, which gives us theoretical conditions on when datasets can be aligned, as well as error bounds when the alignment transformation is isometric.