ARC Colloquium: Shipra Agrawal (Columbia)

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Monday September 23, 2019 - Tuesday September 24, 2019
      11:00 am - 11:59 am
  • Location: Groseclose 402
  • Phone:
  • URL:
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact
No contact information submitted.
Summaries

Summary Sentence: Thompson Sampling for learning in online decision making - Groseclose 402 at 11am

Full Summary: No summary paragraph submitted.

Algorithms & Randomness Center (ARC)

Shipra Agrawal (Columbia)

Monday, September 23, 2019

Groseclose 402 - 11:00 am

 

Title:  Thompson Sampling for learning in online decision making

Abstract:  Modern online marketplaces feed themselves. They rely on historical data to optimize content and user-interactions, but further, the data generated from these interactions is fed back into the system and used to optimize future interactions. As this cycle continues, good performance requires algorithms capable of learning actively through sequential interactions, systematically experimenting to improve future performance, and balancing this experimentation with the desire to make decisions with most immediate benefit. Thompson Sampling is a surprisingly simple and flexible Bayesian heuristic for handling this exploration-exploitation tradeoff in online decision problems. While this basic algorithmic technique can be traced back to 1933, the last five years have seen an unprecedented growth in the theoretical understanding as well as commercial interest in this method. In this talk, I will discuss our work in design and analysis of Thompson Sampling based algorithms for several classes of multi-armed bandits, online assortment selection, and reinforcement learning learning problems. We demonstrate that natural versions of the Thompson Sampling heuristic achieve near-optimal theoretical performance bounds for these problems, along with attractive empirical performance.

This talk is based on joint works with Vashist Avadhanula, Navin Goyal, Vineet Goyal, Randy Jia, and Assaf Zeevi.

----------------------------------

Speaker's Webpage

Videos of recent talks are available at: https://smartech.gatech.edu/handle/1853/46836

Click here to subscribe to the seminar email list: arc-colloq@cc.gatech.edu

Additional Information

In Campus Calendar
No
Groups

ARC

Invited Audience
Faculty/Staff, Postdoc, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
No keywords were submitted.
Status
  • Created By: Francella Tonge
  • Workflow Status: Published
  • Created On: Jul 8, 2019 - 8:48am
  • Last Updated: Sep 3, 2019 - 3:14pm