*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
THE SCHOOL OF MATERIALS SCIENCE AND ENGINEERING
GEORGIA INSTITUTE OF TECHNOLOGY
Under the provisions of the regulations for the degree
MASTER OF SCIENCE
on Friday, July 12, 2019
2:00 PM
in Love 295
will be held the
MASTER’S THESIS DEFENSE
for
Jiaxiong Li
"Epoxy/Triazine Based High Performance Molding Compound for Next Generation Power Electronics Packaging"
Committee Members:
Prof. C.P. Wong , Advisor, MSE
Prof. Meilin Liu, MSE
Prof. Zhiqun Lin, MSE
Abstract:
The power electronics industry has been actively seeking encapsulant materials that can serve in harsher environments. For example, with the power semiconductors leading into SiC era, the higher operation temperature (250 ºC) have proposed great challenges on the packaging materials especially on epoxy molding compound (EMC) technologies, since the temperature exceeds the stability limit of typical epoxy (EP) chemistry. In this thesis, EP/triazine system was selected to develop high temperature stable resin system that can meet the temperature requirements of next generation power electronics packaging.
Different approaches were discussed to enhance the high temperature performance of a previously studied cyanate ester (CE)/ biphenyl EP blend which is impaired by the hydrolysis degradation of remaining cyanate groups. Firstly, the effects of different metal catalyst on the CE properties were discussed. Secondly, a triazine containing molecule triglycidyl isocyanurate (TGIC) was employed to increase the triazine content without increasing CE feed ratio to circumstance problem of unreacted cyanate groups. Finally, the high heat resistant novolac type CE was employed to form the NCE/EP blend, and their blends with different feed ratio were systematically evaluated. In the second part of the thesis, a detailed characterization of a high heat resistant CE/novolac type EP blends and the investigation on their degradation under long-term high temperature storage were summarized. The effects of the CE concentration on the thermomechanical properties of the copolymer were explored, where a tradeoff behavior between the triazine content and crosslink density was accounted for the property change. In addition, the distinguished thermal degradation mechanisms in copolymer with different compositions were identified and illustrated. The knowledge obtained in this work could serve as references in future formulating the EP/triazine based resin system for high temperature applications.