*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************
THE SCHOOL OF MATERIALS SCIENCE AND ENGINEERING
GEORGIA INSTITUTE OF TECHNOLOGY
Under the provisions of the regulations for the degree
MASTER OF SCIENCE
on Wednesday, July 3, 2019
1:00 PM
in MoSE 1201A
will be held the
MASTER’S THESIS DEFENSE
for
Hannah Kathryn Woods
“Rheology and Characterization of High Solids Suspensions for Direct Ink Writing of Energetic Materials”
Committee Members:
Prof. Blair Brettmann, Advisor, ChBE/MSE
Prof. Naresh Thadhani, MSE
Prof. Mary Lynn Realff, MSE
Abstract:
Direct ink writing is a promising approach for preparing energetic materials with unique geometries that are of great interest in military and civil engineering fields due to their potential to control shock wave propagation and energy focus or dissipation. However, there are significant challenges to overcome in using additive manufacturing to produce energetics, particularly in using inks with high particle content (>60 vol% particles) while maintaining both extrusion capability and print quality. Voids and interfaces in energetics are areas of high risk for hot spot formation, and with the layer-by-layer additive manufacturing process, voids can manifest both in between and within the extruded filaments as well as between printed layers. Concerns associated with the challenges of printing high solids suspensions make understanding the flow and print capabilities of these materials of great importance.
The binder used in suspensions for direct ink writing plays an important role in overall flow characteristics of the ink, and therefore has significant impact on final print quality. In this work, glass microspheres in polymer-solvent and photocurable monomer binders are studied as model systems to provide an in-depth study of polymer binder design. This work aims to understand how binder characteristics affect the viscosity and printability of such high solids suspensions. We show that the suspension viscosity is primarily controlled by the particle volume fraction for the photocurable binder system, while both the particle volume fraction and polymer molecular weight influence the viscosity in the case of the polymer-solvent binder system. Both binder types can be tuned to make printable suspensions that result in lines of consistent width and 3D disc-shaped objects, indicating that both paths show promise for future direct ink writing formulations of energetic materials.