Bioengineering Seminar Series

*********************************
There is now a CONTENT FREEZE for Mercury while we switch to a new platform. It began on Friday, March 10 at 6pm and will end on Wednesday, March 15 at noon. No new content can be created during this time, but all material in the system as of the beginning of the freeze will be migrated to the new platform, including users and groups. Functionally the new site is identical to the old one. webteam@gatech.edu
*********************************

Event Details
  • Date/Time:
    • Tuesday March 10, 2020 - Wednesday March 11, 2020
      11:00 am - 11:59 am
  • Location: Parker H. Petit Institute for Bioengineering and Bioscience, Room 1128
  • Phone: (404) 894-6228
  • URL: Petit Institute website
  • Email:
  • Fee(s):
    N/A
  • Extras:
Contact

Cheng Zhu, Ph.D. - faculty host

Summaries

Summary Sentence: "CRISPR and DNA Repair" - Taekjip Ha, Ph.D., Johns Hopkins University

Full Summary: No summary paragraph submitted.

Media
  • Parker H. Petit Institute for Bioengineering & Bioscience Parker H. Petit Institute for Bioengineering & Bioscience
    (image/jpeg)

"CRISPR and DNA Repair"

Taekjip Ha, Ph.D.
Bloomberg Distingushed Professor
Professor, Biophysics and Biophysical Chemistry
Professor, Biomedical Engineering
Investigator, Howard Hughes Medical Institute
Johns Hopkins University


Double strand breaks (DSB) are frequently generated, and researchers have discovered many proteins and processes needed to repair the breaks. However, relative timing of sub-stages of DNA repair or even their ordering has been difficult to determine due to the lack of method to synchronize the generation of well-defined breaks in living cells. Exposing cells to X-ray and UV can produce massive DNA damages at a defined time point, but the nature of the damage is ill-defined, and damages are made randomly. CRISPR-Cas systems allow the generation of breaks at specifically defined genome locations, but despite many attempts to develop ligand- or light-inducible CRISPR-Cas systems, the cleavage kinetics remains slow, leading to unsynchronized repair. We developed a very fast CRISPR-Cas9 can generate a DNA break at a defined locus at a well-define (within seconds) time point, allowing us to reveal the mechanisms of break recognition and study DSB repair and other cellular processes with an unprecedented spatiotemporal control.

The Bioengineering Seminar Series is co-hosted by the Parker H. Petit Institute for Bioengineering and Bioscience, and the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

Related Links

Additional Information

In Campus Calendar
Yes
Groups

Parker H. Petit Institute for Bioengineering and Bioscience (IBB), Wallace H. Coulter Dept. of Biomedical Engineering

Invited Audience
Faculty/Staff, Public, Graduate students, Undergraduate students
Categories
Seminar/Lecture/Colloquium
Keywords
IBB, BioE Seminar
Status
  • Created By: Colly Mitchell
  • Workflow Status: Draft
  • Created On: May 28, 2019 - 11:17am
  • Last Updated: Mar 2, 2020 - 7:49am